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When using multiple Kinects, there must be enough distances among neighboring Kinects to avoid spoiled range data caused
by the interference of their infrared speckle patterns. In the arrangement, their overlapped regions are too small to apply existing
calibration methods using correspondences between their observations straightforwardly. Therefore, we propose a method to
calibrate Kinects without large overlapped regions. In our method, first, we add extra RGB cameras in an environment to
compensate overlapped regions. Thanks to them, we can estimate their camera parameters by obtaining correspondences between
color images. Next, for accurate calibration, which considers range data as well as color images of Kinects, we optimize the
estimated parameters by minimizing both the errors of correspondences between color images and those of range data of planar
regions, which exist in a general environment such as walls and floors. Although our method consists of conventional techniques,
its combination is optimized to achieve the calibration. © 2015 Institute of Electrical Engineers of Japan. Published by John
Wiley & Sons, Inc.
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1. Introduction

Recently, Kinect [1] and other types of consumer range sensors
have attracted the attention of researchers, because they can
simultaneously capture both metric range data and color images
at low cost. Using a Kinect, many applications have been
developed such as people detection [2], gait identification [3], pose
estimation [4,5], and 3D shape reconstruction [6,7]. If we could
utilize multiple Kinects for these applications, it would be possible
to enlarge the area that these applications cover. To realize a system
using multiple Kinects, it is one of fundamental and essential tasks
to calibrate their camera parameters, that is, intrinsic parameters
including their focal length and radial distortion and extrinsic ones
consisting of their rotation and translation.

For RGB cameras, some methods to calibrate their intrinsic and
extrinsic parameters have been proposed. For their intrinsic calibra-
tion, there exist methods such as the one proposed by Zhang [8].
The existing methods can also be used for the intrinsic calibration
of Kinects straightforwardly. On the other hand, for the extrinsic
calibration of RGB cameras, there exist methods that are based on
corresponding points between their images [9]. In these methods,
it is desirable that RGB cameras have large overlapping regions
to acquire a sufficient number of corresponding points between
their images. In contrast, for multiple Kinects, it is not desir-
able because when Kinects have large overlapping regions, their
infrared (IR) speckle patterns, which are projected to construct
range data, interfere with neighboring Kinects. The interference
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causes missing areas in the resultant range data of each Kinect.
This is referred to as the “interference problem.” Considering the
interference problem, there must be sufficient distance between
neighboring Kinects. In this arrangement, the existing method
cannot be straightforwardly applied for their extrinsic calibration
because it is impossible to obtain a sufficient number of corre-
spondences between color images from their small overlapping
image regions. Moreover, for their accurate extrinsic calibration,
it is necessary to consider not only color images but also range data
because the two captured data of Kinects involve their independent
errors.

Therefore, we propose a calibration method for multiple Kinects
whose overlapping regions are not large enough, considering not
only the errors of color images but also those of range data.
In extrinsic calibration of our method, first, we add extra RGB
cameras in an environment to solve the shortage of the overlapped
regions. In the overlapped regions among Kinects and extra RGB
cameras, we can obtain a sufficient number of corresponding
points between color images. They enable the estimation of their
camera parameters by an existing method. Next, for accurate
calibration, which considers not only the errors of color images
but also those of range data, we optimize the estimated parameters
by minimizing both the errors of correspondences between color
images and those of range data of planar regions, which exist in a
general environment such as walls and floors. Although our method
is composed of well-known processes, we properly select and
combine them with the consideration of the interference problem,
which existing methods for calibrating extrinsic parameters of
multiple Kinects [10–14] do not consider.

2. Accurate and Efficient Kinect Calibration

Inside a Kinect, there are two types of cameras, that is, an RGB
camera and an IR camera that observes speckle patterns projected
by an IR projector to construct range data. However, it can be
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regarded that they have the same intrinsic and extrinsic parameters
through alignment between the range data and the color image,
which is provided by the Kinect SDK function with calibration
information on factory default configuration. Under this premise,
we discuss how to calibrate the intrinsic and extrinsic parameters
of multiple Kinects.

As intrinsic parameters of a Kinect, we consider the fol-
lowing two kinds of parameters. The first ones are intrinsic
camera parameters including the focal length, the image cen-
ter, and the radial distortion. These parameters can be cali-
brated by conventional methods such as [8] straightforwardly.
The second ones are parameters to compensate range errors,
which increase according to the object distance of a Kinect [15]
(Fig. 1(a)). These parameters are estimated using range data that

are captured under the condition that the true range values can be
measured.

On the other hand, extrinsic parameters of a Kinect consist of
the rotation and translation as generally defined. When multiple
Kinects are located, the distances among neighboring Kinects must
be wide enough to avoid the interference problem. To calibrate
extrinsic parameters of Kinects that have few overlapping regions,
we have to consider a feasible solution method. One approach
to calibrate such Kinects is to align each Kinect to 3D world
coordinates independently. This approach can achieve extrinsic
calibration of Kinects by using 2D points captured from color
images [16] or 3D points captured from range data [17]. However,
this approach is impractical because the larger the number of
Kinects is, the more it is required to spend time and effort
for the alignment of each Kinect. Another approach is to first
estimate relative rotation and translation of Kinects by using the
correspondences between captured data of Kinects, and then align
them to 3D world coordinates. This approach is more practical than
the former for the extrinsic calibration of many Kinects. However,
it is impossible to apply the approach to our case straightforwardly
because their small overlapping regions cannot provide a sufficient
number of correspondences. In the past, some researchers have
proposed methods to calibrate multiple RGB cameras that do
not have any overlapping regions, which use the reflection of a
mirror plane to generate virtual overlap regions [18,19]. These
methods can achieve our goal thanks to the correspondences
between color images that are obtained from the virtual overlap
regions. However, it is necessary to move a mirror plane over
again and again to acquire a sufficient number of correspondences
because they are derived only from the area that a mirror plane
can cover. Considering this effort, the more widely the Kinects
are located, the more impractical the methods become. Therefore,
we propose a practical method to calibrate extrinsic parameters of
such Kinects. In our method, we add extra RGB cameras in an
environment to solve the shortage of overlapping regions. In the
overlapping regions among Kinects and extra RGB cameras, we
can obtain a sufficient number of corresponding points between
color images to estimate their camera parameters (Fig. 1(b) top).
Compared with the methods using a mirror plane, our method is
much more practical because it is unnecessary to move them once
they were mounted at their proper location. Although we might
obtain 3D corresponding points between range data by using extra
range sensors instead of the RGB cameras, we consider that our
method is more suitable because the observation area of color
images of a Kinect is larger than that of range data, which is
accurate within only several meters from a Kinect [15]. Next,
because there are independent errors in color images and range
data of Kinects, we consider the optimization of the estimated
extrinsic parameters by minimizing not only the errors of color
images but also those of range data. One well-known optimization
approach for range data is the alignment between range data such
as iterative closest point [20]. However, due to the accumulated
error of each neighboring alignment, the whole range data would
not be aligned properly. Therefore, we employ an optimization
approach of the alignment between the range data of each Kinect
and a 3D world coordinate space. In our method, planar regions,
which exist in a general environment such as floors and walls, are
used. The position of these regions can be easily measured in world
coordinates beforehand. Using range data of the planar regions and
their measured position, we minimize the distance between their
position and their 3D points projected from range data as well as
the error of correspondences in color images (Fig. 1b bottom).

3. Algorithm

This section describes the details of our calibration method. In
this section, we continue to regard that two cameras of a Kinect
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have same intrinsic and extrinsic parameters, as was stated in
Section 2.

3.1. Calibration of intrinsic parameters As men-
tioned in Section 2, we calibrate both intrinsic camera parameters
and parameters to compensate range errors as the intrinsic calibra-
tion. To calibrate intrinsic camera parameters, we employ Zhang’s
method [8] to each Kinect. To compensate range errors, we define
an error model as (1) on the basis of the relationship that an error
in the IR camera coordinates yields a measured range error that
increases quadratically with the distance [15].

e(m) = a(m)d(m)2 (1)

where a(m), d(m), and e(m) are the error parameter, the observed
range value, and its error at a pixel m = (u , v), respectively. We
consider that each Kinect has its own error parameters because we
found through observation that an error distribution of range data
of a Kinect differs from those of others. Once the error parameters
are obtained, the errors are corrected by

D(m) = d(m) − e(m) = d(m) − a(m)d(m)2 (2)

where D(m) denotes the compensated range value at the pixel m .
To estimate the error parameters, we apply the following

procedure to each Kinect. First, a Kinect is located at various
positions with its camera view perpendicular to a planar wall. After
capturing its range data at each position, we obtain the parameter
of each pixel by the least-squares method.

3.2. Initial estimation of extrinsic parameters We
initially estimate extrinsic parameters, that is, the rotation R and
translation t of each Kinect. As mentioned in Section 2, in the
arrangement of Kinects with consideration of the interference prob-
lem, it is impossible to apply existing methods straightforwardly
because their overlapping regions are not large enough to sup-
ply a sufficient number of correspondences between color images.
Therefore, in our method, we add some extra RGB cameras in an
environment to obtain a sufficient number of corresponding points
between color images. Using the corresponding points, we estimate
their extrinsic parameters as follows. First, extrinsic parameters
are obtained by the direct linear transform technique. Then, bun-
dle adjustment [9] is performed to improve the extrinsic parameter
accuracy.

In the above estimation, it only achieves weak calibration that
leaves the scale indeterminacy of the extrinsic parameters because
there is no information about a metric scale in the estimation.
Thus, we prepare some markers whose position is measured in
world coordinates beforehand to determine their metric scale.

3.3. Optimization of extrinsic parameters We opti-
mize the extrinsic parameters that are initially estimated in
Section 3.2 by using not only the correspondences between color
images but also the range data of planar regions. Since the intrinsic
parameters are obtained accurately beforehand, we fix their value
so that the number of optimized parameters can be decreased for
stable optimization. To acquire the optimal parameters that mini-
mize both sensor errors simultaneously, we minimize the objective
function of (3) by the Levenberg–Marquardt algorithm.

R̂
(λ)

1 , t̂ (λ)
1 , · · · , R̂

(λ)

N , t̂ (λ)
N = argmin

R1,t1,···,RN ,tN

(
(1 − λ)El + λEp

)
. (3)

In (3), El is the error about the corresponding points between color
images captured from Kinects and extra cameras, and Ep is the
error about planar regions of range data of Kinects. These details
are mentioned in the next paragraph. λ is the weighting coefficient

value of two error values to consider the different effect between
El and Ep in infinitesimal change of the optimized extrinsic
parameters. Because the optimized result varies depending on the
value of λ, it is necessary to use an appropriate one. Therefore,
in our method, first we prepare some candidates of extrinsic
parameters that are obtained by optimization with different values
of λ. Then, from the candidates, we adopt appropriate extrinsic
parameters when both errors are minimal simultaneously.

El is defined as (4) to evaluate the distance between a corre-
sponding point and the epipolar line. The distance is calculated as
the absolute value of the inner product of the unit normal vector of
the epipolar plane and the displacement vector between two cam-
eras. In (5), it is normalized by the length between two cameras
to remove the influence of the length.
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where Ncam is the total number of cameras, which is equal to the
sum of the number of Kinects and extra cameras. Ncor is the total
number of corresponding points between color images captured
from the cameras. C (k)

cam is the number of pairwise combinations
from cameras that observe the k th corresponding point. v (k)

i and
v (k)

j are the vectors from the focal point of the i th and the j th
cameras to the k th corresponding point in their own normalized
image plane, respectively. t ij is the displacement vector from the
translation t i to t j .

On the other hand, Ep is calculated from the average of pj ,
denoting the range error. It is defined as the average of the
distances between the measured position of a planar region � and
its corresponding 3D point projected from range data, expressed
as follows:

Ep = 1

Nkin

Nkin∑
j=1

N�∑
i=1

1

S�i

pj (�i ) (6)

pj (�i ) =
∑

X O (m)∈�i

h (X O (m) , �i ) (7)

where Nkin and N� are the number of Kinects and the planar
regions, respectively. S�i is the area of the i th planar region.
X O (m) is the 3D world coordinate point that is projected from the
range data of the j th Kinect, and h is the metric distance function
between a 3D point and its planar position.

4. Experiments

4.1. Experimental setup For experiments, we used an
indoor environment that was designed as a corridor (Fig. 2a). In
this environment, we mounted some Kinects facing each other
across the corridor at 2.1 m height. Their camera views were set
downward, as shown in the yz cross-section view of Fig. 2a so
that they could observe pedestrians in this corridor. Consequently,
the laser source of a Kinect was not included in the views of
the others, which meant that we did not have to consider the
influence of the appearance of these laser sources.1 To define a
distance between neighboring Kinects that was adequate to capture
range data of a pedestrian with few missing regions, we observed

1 We also confirmed through different observations that even though a
laser source is emitted into a Kinect, it does not affect the range data while
only range values of the corresponding pixels are missing in the captured
range data.
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Fig. 2. View of the experimental environment. (a) Layout drawing, (b) Sample image captured from the extra camera, (c) Human bodies,
and (d) Cardboard boxes

how the interference appeared on range data of the region of
a person who walked in this environment while changing the
distance from 3.0 to 0.5 m at 0.5 m intervals. As a result, 2.0
m was the shortest distance that satisfied the condition that there
were few missing data on his/her region. Therefore, we employed
the distance between neighbors as 2.0 m. To control these Kinects
and save captured data, each Kinect was connected to its own
computer, whose clock was adjusted by an NTP server.

For the range error calibration described in Section 3.1, we
prepared a special setting where a Kinect could be located
perpendicular to a wall. In this setting, we captured range data
of each Kinect while changing the distance between the Kinect
and the wall from 1.0 to 3.0 m at 0.5 m intervals before mounting
it in the environment.

For the initial estimation of extrinsic parameters (Section 3.2),
one wide-range RGB camera, which was enough to cover the
whole environment, was additionally mounted at the left bottom
corner of Fig. 2a as an extra camera. An image captured from
the extra camera is shown in Fig. 2b. To acquire corresponding
points between color images, we first captured images of an LED
light in poor illumination and recorded their timestamp. In this
capture, we swung the light as widely as possible so that it could
be widely distributed in the environment. Then, to reduce the gap

of capture timing, we virtually generated corresponding points at
specified time intervals from captured ones. In the generation of
a corresponding point at a given time, we linearly interpolated
the image coordinate values of captured corresponding points by
using their timestamp that was recorded in a common time system
due to the NTP server. As stated in Section 3.2, to represent
calibrated parameters in metric world coordinates, it is necessary
to prepare some corresponding points whose position is known
in metric world coordinates. In this experiment, we prepared
eight corresponding points located at two different heights of four
positions indicated by (A)–(D) in Fig. 2a.

For the optimization of extrinsic parameters (Section 3.3), we
use three types of planes, that is, the floor, screen regions, and
the lateral side of screen units. They are represented by colors
in Fig. 2a. To obtain the range data of the planar regions, we
first captured one where no foreground objects appeared, which
we call background data. In this capture, we could obtain the
full range data with no effect of interference because the data
were captured from each individual Kinect with it turned on
while the others were turned off. Then, we manually clipped the
range data of the planar regions from the background data. The
metric position of the planar regions was derived from the layout
map with a high precision of ±0.5 cm because the environment
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was built very precisely by using surveying instruments and laser
markers.

4.2. Changing the Weighting Coefficient of Two
Errors In the optimization of extrinsic parameters, as explained
in Section 3.3, we first prepare some candidates of extrinsic param-
eters that are obtained by the optimization with different values of
λ. Then, we adopt suitable extrinsic parameters of when both errors
are minimal simultaneously from the candidates. In this experi-
ment, we prepared some values of λ from 0.5 to 0.0001. Figure 3
shows El and Ep of each value of λ. When deciding λ when both
errors are minimal simultaneously from the candidates, we used the
following method based on the relation that a smaller λ leads to a
smaller El and, conversely, a larger λ results in a smaller Ep . First,
we calculated the change rate of each error between neighboring
λ. Then, we adapted λ that minimized the sum of the change ratio
of both errors, which was 0.01.2 The suitable extrinsic parameters
of λ = 0.01 were subsequently used in all the experiments.

4.3. Experimental Results Our extrinsic calibration
method comprises the initial estimation of extrinsic parame-
ters (Section 3.2) and the optimization of extrinsic parameters
(Section 3.3). In these experiments, we focus on the difference
between the results before and after optimizing extrinsic parame-
ters to confirm the effectiveness of the whole proposed method
including the optimization. Note that we attempted the initial
estimation without using the extra camera, and confirmed that
it did not work well due to an insufficient number of corre-
sponding points between color images of only the Kinects; the
estimated position of Kinects was obviously incorrect. We also
attempted the initial estimation without using the corresponding
points between one Kinect and another. As a result, it also failed.
From these results, it can be concluded that in these experiments,
it was essential for the initial estimation to use both larger overlap
regions between the extra camera and the Kinects and smaller ones
between the Kinects.

To evaluate our method, we performed shape reconstruction
of the environment where people and cardboard boxes were
located as foreground objects by registering range data of all the
Kinects in world coordinates. In qualitative evaluation, we used
reconstruction data of the environment where three persons were
at positions (B)–(D) of Fig. 2a, as shown in Fig. 2c. In quantitative
comparison, we used reconstruction data of cardboard boxes whose

2 λ might be included in parameters that should be optimized. However,
when we tried to optimize the value of λ together with the extrinsic
parameters, we obtained only unreasonable parameters with quite a small
value of λ. This is because El was intensively minimized and Ep was
ignored by the small value of λ to minimize the objective function.

size was carefully measured at the same three positions and the
position (A), as shown in Fig. 2d.

Figure 4 shows the reconstruction data of the environment with
the persons before and after optimizing extrinsic parameters. As
seen from the left image of Fig. 4a, the shape of a target object at
the position (B) was far from a human body before optimization.
By contrast, after optimization, the shape of the person was well
reconstructed. Figure 4b shows their close-up images, whose view
is represented as the red frame in Fig. 4a. In the result before
optimization, we notice that edges of a side wall, which should
be straight, were also incorrectly reconstructed. By contrast, after
optimization the edges of the side wall became almost straight.
From these results, it can be confirmed that our optimization
procedure worked well.

Although the above reconstruction results proved the effective-
ness of the optimization, there remain concerns that the bad recon-
struction results before optimization were caused by the failure of
the initial parameter estimation. To confirm whether the initial esti-
mation procedure had problems, we show the average reprojection
error of the corresponding points and the camera viewpoints in
Fig. 5a. From this figure, we can see that the camera viewpoints
were estimated almost correctly and there were few reproduction
errors of all corresponding points. Therefore, it can be concluded
that the initial estimation procedure worked well without any prob-
lems thanks to a sufficient number of the corresponding points
obtained from the Kinects and the extra camera. Totally consider-
ing the results of both Fig. 4 and Fig. 5, we can say that it was
necessary for Kinect calibration to minimize the error of not only
color images but also that of range data even though the error of
color images were increased.

Next, we show the result of a quantitative evaluation using the
cardboard boxes located at the positions (A)–(D) as shown in
Fig. 2d. Before shape reconstruction including these boxes, we
first measured their size with a ruler. Next, we marked the corner
positions where a box should be located on the ground by using
a measure and a leveling string. Then, we carefully located them
so that their corners were aligned with their marked positions.
The measuring precision was estimated at about ±1.0 cm. After
the shape reconstruction, we manually extracted the 3D point
data of each surface of each box from the reconstructed data.
The extract box shape consisted of about 60 000 point data. For
quantitative evaluation, we calculated the distance between each
extracted surface data and its corresponding planner position as
the error.

Figure 6 represents the average error of each box. From the
result, it is obvious that the parameter optimization successfully
improved the reconstruction accuracy of all boxes including the
one at the position (A), which was difficult to achieve with high
accuracy because it was placed at the edge of a scene. In position
(B), its errors were dramatically decreased. In Fig. 2a, it is found
that cameras did not surround this position. After the parameter
optimization, we could recover poor estimation derived from these
badly located cameras. In position (C), the accuracy was the best
of 2.5 cm after the parameter optimization. It is because the extra
camera located near there could supply reliable corresponding
points and because Kinects surrounded there. It was previously
reported that when the distance from a Kinect to the subject is 3 m,
the random error and the range resolution are about 1.5 and 2.5 cm
on average, respectively [15]. Considering the total error caused
by the above two factors, it can be said that the reconstruction
error was almost zero.

4.4. Total time required for calibration When we
used a commercial computer that had Intel R© CoreTM i7 processors
(8 cores, 2.93 GHz) and 16 GB of memory for the calibration,
it took nearly 4 h to complete the whole procedures. We spent
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most of the time to extract the range data of the planar regions
manually and to complete the optimization of extrinsic parameters
while changing the value of λ. If we can extract the range data of
planar regions automatically and implement parallel processing to
find optimal λ, the time will be shortened.

5. Conclusion

In this paper, we proposed an accurate and efficient calibration
method for multiple Kinects whose overlapping regions are not
large enough. For their extrinsic calibration, we first added
extra RGB cameras in an environment to solve the shortage of
overlapping regions. Thanks to the overlapping regions among
Kinects and extra RGB cameras, we could obtain a sufficient
number of corresponding points between color images to estimate
their camera parameters. Then, the estimated parameters were
optimized to minimize both the errors of corresponding points
between color images and the ones of range data of planer regions,
which existed in a general environment. This procedure was
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suitably designed based on the characteristics of the color images
and range data. From the results of the experiments, we confirmed
the effectiveness of our method.

As future work, we will try to reduce the time required for
calibration by achieving the improvement described in Section 4.4.
Moreover, we will try to generate synchronous range data. Because
there is no function to capture range data synchronously in Kinects,
a temporal capture gap occurs among them. To deal with this issue,
we will try to generate range data at a common time of Kinects
by a morphing technique for 3D range data [21].
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