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Abstract: This paper proposes a novel gait feature representation that well describes characteristics of a walking
person from the perspective of a range sensor. Most existing methods for gait feature extraction use a sequence of
his/her silhouette as their input, so that they inevitably suffer from the difficulty of silhouette extraction in real scenes
and change of view direction, which prevent them from being applied in practice. The proposed method, on the other
hand, does not require such accurate segmentation, and is not affected by view change since captured range data has
three-dimensional information. In addition, our method can explicitly separate dynamic feature from a static one, e.g.,
body shape, which have never been realized. Experimental results of gait authentication show its effectiveness.
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1. Introduction

Walking is a fundamental behavior of our daily lives. Gait (i.e.,
way of walking) thus gets more attention as a useful biometric in
many fields: person authentication [1], [2], [3], [4], [5], [6], [7],
age estimation [8], gender estimation [9], etc. Performance re-
ported in these studies are in fact good enough to be applied
in the real-world. They have, however, never been applied yet.
The essential reason is that their features are based on silhou-
ettes of a walking person so that they need accurate silhouettes,
which is usually difficult to obtain in real scenes. There are
also approaches that use other features instead of the silhou-
ettes [10], [11], their performance is still worse than those by the
silhouette-based methods. Change of view direction is also an-
other problem. The silhouette-based methods implicitly assume
the person is captured by an orthogonal camera, so that as long as
we use a practical camera, which is modeled as a projective cam-
era, his/her silhouette is distorted according to his/her position
in captured images. These problems, the difficulty of silhouette
extraction and view change, prevent the gait analysis techniques
from being applied in practice.

Motivated by this fact, this paper proposes a novel gait fea-
ture representation method that well describes characteristics of
a walking person from the perspective of a range sensor. We
call this feature Depth-based Gait Feature (DGF). The proposed
method does not require accurate segmentation; we need just the
position of the person and then use depth data around the posi-
tion. In addition, our method is not affected by view change since
the depth data can be aligned correctly by considering the view
change. This should be the first method for gait representation
that can be applied to real scenes.
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Our method has another interesting property that it can explic-
itly separate motion and shape features, which has never been
achieved in other studies. The direct component and the ampli-
tude/phase components of DGF correspond to the shape and mo-
tion features, respectively. Sivapalan et al. [12] also propose a
depth-based feature, but it is just a simple extension of Gait En-
ergy Image (GEI) [2] and thus shape and motion features are not
separated.

To evaluate the ability of DGF, we experimentally apply it to
person authentication task. The experimental results show that
our method gives better performance than a state-of-the-art 2-D
silhouette-based method.

2. Algorithm

2.1 Pedestrian Detection and Tracking
Figure 1 (a) shows an example of depth image as captured by

a range sensor. We assume the range sensor is preliminarily cal-
ibrated so that the depth image can be transformed into a three-
dimensional (3-D) point cloud in the world coordinate system,
and vice versa. A walking person is detected by background sub-
traction. Note that we do not need to extract his/her accurate sil-
houette. His/her position in the world coordinate system (Xs, Ys)

Fig. 1 View normalization and clipping to obtain GDS.
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Fig. 2 Virtual viewpoints.

is calculated as the gravity point of three-dimensional points cor-
responding with the region. The person is then tracked simply by
applying this detection process to each frame.

2.2 View Normalization and Clipping
In the case of the two-dimensional (2-D) silhouette-based

methods, silhouettes in a sequence are aligned so that their grav-
ity points should be constant, to calculate an average image in
the case of GEI [2] or apply Fourier transformation in Ref. [3].
Since there is no 3-D information, however, they suffer from the
fact that the silhouette is distorted according to the position in a
captured image caused by perspective effect of cameras, which
is inevitable even when the person walks straight and the camera
is located perpendicularly to his/her walking direction. On the
other hand, in the case of our study, we have 3-D information of
the person so that we can overcome this distortion problem by
generating the depth image of a virtual viewpoints that is located
at a relatively constant position from the person.

Figure 2 describes how to determine the virtual viewpoint. We
first obtain the person’s direction u = (vx, vy) (|u| = 1) by differen-
tiating his/her trajectory. The position (Xc, Yc,Zc) and orientation
(φXc, φYc, φZc) is then calculated as follows:

(Xc, Yc,Zc) = (Xs − vxd,Ys − vyd, d tan(θ) + Z), (1)

(φXc, φYc, φZc) = (0, θ, tan−1(vy/vx)), (2)

where θ denotes the depression angle of the range sensor. Fig-
ure 1 (b) shows generated depth images using the extrinsic pa-
rameters. Since the virtual camera follows the person, he/she ap-
pears always at the center of the depth image regardless of where
he/she is. We are thus able to obtain a sequence of the depth im-
age around the person just by clipping a window and resizing it to
a fixed size H×W, as shown in Fig. 1 (c). We call the sequence of
the clipped depth images as a Gait Depth-map Sequence (GDS).
Note that we do not care if each pixel is part of the foreground
or background at this step. GDS thus also contains floor regions
around his/her feet.

2.3 Frequency Domain Feature
By considering the periodicity of walking, we first estimate a

period Ngait and extract frames corresponding with a cycle from
GDS by evaluating its autocorrelation, which is a similar way
to Fourier Domain Feature (FDF) [3]. We then apply Discrete
Fourier Transformation (DFT) to the extracted frames.

G(x, y, k) =
Ngait−1∑

n=0

g(x, y, n)e− jω0kn, (3)

Fig. 3 Amplitude spectrum and phase.
(a) A(x, y, 0), (b) A(x, y, 1), (c) Θ(x, y, 1).

where g(x, y, n) denotes a depth value at a pixel (x, y) in the n-th
frame, ω0 is a base angular frequency for the gait period Ngait, and
G(x, y, k) is the DFT of GDS for k-times the gait period. Then,
an amplitude spectrum A(x, y, k) is calculated as follows:

A(x, y, k) =
1

Ngait
|G(x, y, k)|. (4)

In most existing studies, they use only the amplitude information
for gait analysis. In this study, however, we also focus on phase
information. This phase component Θ(x, y, k) is calculated as fol-
lows:

Θ(x, y, k) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
tan−1

(
Im[G(x, y, k)]
Re[G(x, y, k)]

)
(Re[G(x, y, k)] > 0),

π + tan−1

(
Im[G(x, y, k)]
Re[G(x, y, k)]

)
otherwise,

(5)

where Re[G(x, y, k)] and Im[G(x, y, k)] are the real and imagi-
nary parts of G(x, y, k), respectively. Figure 3 shows examples
of A(x, y, 0), A(x, y, 1), and Θ(x, y, 1). The direct component
A(x, y, 0) mainly describes the shape of the person. On the other
hand, A(x, y, 1) and Θ(x, y, 1) correspond to the fundamental mo-
tion of walking such as arm swings and steps that occur only once
in a period, so that pixel values around the arms and legs are
higher than ones around the trunk in A(x, y, 1) and the right arm
and left leg have similar phase while the left and right arms have
the opposite phase.

A(x, y, k),Θ(x, y, k) (k ≥ 2) correspond with amplitudes and
phases of k-times the frequency. These are, however, expected
to be noisy and less reliable considering the number of frames in-
cluded in a cycle and the noise of each range sensor. In this paper,
therefore, they are not used for analysis.

2.4 Thresholding
In Fig. 3 (b), there are blue regions, which mean much higher

values, around the person’s edge in A(x, y, 1). This is because of a
pixel in the region either on the human body or on the background
because of his/her fluctuation. Shapes of these regions have in-
formation about his/her walking, but they are actually described
also in A(x, y, 0) (as green regions). To reduce the redundancy,
the blue regions are eliminated using a threshold τ as follows:

A′(x, y, 1) =

⎧⎪⎪⎨⎪⎪⎩
A(x, y, 1) (A(x, y, 1) > τ),
Nan otherwise.

(6)

Note that this thresholding is not sensitive at all. The depth of the
background is much larger than that of the range of the human
shape and motion.
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Fig. 4 Amplitude spectrum and phase after thresholding.
(a) A(x, y, 0), (b) A′(x, y, 1), (c) Θ′(x, y, 1).

Fig. 5 Feature representation of our method.

As for the phase component Θ(x, y, 1), we find that pixel val-
ues around the trunk is very noisy and unstable. This is because
the range of depth change around the trunk is so small compared
with the measurement accuracy of range sensors. Considering
this fact, we also eliminate the corresponding regions by mask-
ing Θ(x, y, 1) by A′(x, y, 1). In addition, considering that the ex-
tracted periods do not begin with a constant phase walking, a cer-
tain pixel (x0, y0) (on the right leg) is determined as a reference
pixel, and all pixel values are normalized by the value of the ref-
erence pixel. This procedure is described as follows:

Θ′(x, y, 1) =⎧⎪⎪⎨⎪⎪⎩
Θ(x, y, 1) − Θ(x0, y0, 1) (A′(x, y, 1) � Nan)
Nan (A′(x, y, 1) = Nan)

(7)

Figure 4 shows A′(x, y, 1) and Θ′(x, y, 1). These images de-
scribe well the fundamental motion of walking.

2.5 Feature Representation
Comparing A′(x, y, 1) and Θ′(x, y, 1) with A(x, y, 0) in Fig. 4,

we find they still contain redundancy; A′(x, y, 1) and Θ′(x, y, 1)
are strongly affected by the human shape that is described in
A(x, y, 0). To reduce the redundancy, as shown in Fig. 5 we com-
press them into one-dimensional vectors a and t by choosing the
maximum value for each row as follows:

aR = {aR j = max
0≤i≤ W

2

A′(i, j, 1)} (i = 1, · · · ,H) (8)

aL = {aL j = max
W
2 ≤i≤W

A′(i, j, 1)} (i = 1, · · · ,H) (9)

tR = {tR j = max
0≤i≤ W

2

Θ′(i, j, 1)} (i = 1, · · · ,H) (10)

tL = {tL j = max
W
2 ≤i≤W

Θ′(i, j, 1)} (i = 1, · · · ,H) (11)

Finally, the gait feature in this paper is defined as a vector con-
sisting of the direct component A(x, y, 0), the amplitude compo-
nent a = {aR, aL}, and the phase component t = {tR, tL}. We call
this new gait feature as Depth-based Gait Feature (DGF). The
number of dimension of this feature is thus H × (W + 4).

Fig. 6 Experimental setting.

(a) Kinect (front) (b) Camera (front) (c) Camera (side)
Fig. 7 Captured images in experimental environment.

3. Experiment

3.1 Settings
To evaluate the effectiveness of this feature representation, we

apply the feature to a person authentication task, which is in fact
the main interest in the gait analysis field.

Figure 6 shows our experimental environment. There is a
straight walking path. Microsoft Kinect, which is used as a range
sensor, is located in front of the path. In addition, we also locate
two conventional cameras; one is located at the same position as
the Kinect, and the other is located to observe a walking person
from his/her side. Figure 7 shows examples of their captured im-
ages. There are 31 subjects, and there are five sequences for each
subject. A sequence is for the gallery and the others are used as
probes. Note that since all walls and floor are colored green and
we asked each subject to wear a black suit that covers the entire
body, their silhouette can be easily and accurately obtained from
images captured by the cameras. As a result, the quality of the sil-
houettes is high enough. On the other hand, as the Kinect cannot
measure depths around occluding edges, the edges of the subjects
in the depth images are much less clear than those of the cameras.

For the similarity measurement of features, we use the L2 norm
of each component. For this calculation, pixels labeled as Nan are
ignored.

3.2 Comparison with a Silhouette-based Method
For comparative evaluation, we employed ROC curves to in-

dicate the trade-offs between the false rejection rate (FRR) of
the genuine and the false acceptance rate (FAR) of the imposter
while changing the acceptance threshold. Figure 8 shows the
ROC curves: (a) and (b) are the curves using FDF [3] as obtained
from camera images, and (c) is from using DGF as obtained from
depth images. From this result, it is confirmed that DGF gives
better performance than FDF.

In addition, to clarify the reason of the performance, Fig. 8 also
shows the curve of DGF with height normalization, which means
that the height cue is eliminated from the feature. From this re-
sult, we confirmed that even when there is no height cue, our
depth-based feature still gives better performance than FDF. This
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Fig. 8 Effect of scale normalization.

Fig. 9 Comparison between a 2-D silhouette based method and our
proposed method (ROC curves).

Table 1 Performance comparison by equal error rate (EER).

Feature EER [%]
FDF (fron) 5.64
FDF (lateral) 5.64
DGF, Direct 1.61
DGF, Amplitude 10.48
DGF, Phase 25.00
DGF, Combined 1.61

fact indicates that the 2-D silhouette-based method is inevitably
affected by the perspective distortion, while our 3-D depth-based
proposed method is not affected since it can utilize 3-D informa-
tion.

3.3 Comparison of Components
Figure 9 shows how each component in our method con-

tributes to the performance of the person authentication task. An
equal error rate (EER) of the FAR and FRR is another measure-
ment for comparison. Table 1 shows EERs of these components.
In addition, Fig. 10 shows their confusion matrices. In each ma-
trix, a row and column correspond with gallery and probe, respec-
tively, and there are five rows for each subject.

In Fig. 9, the direct component (c) gives much better perfor-
mance than the amplitude component (d) and the phase compo-
nent (e). The performance when combining all of the components
(f) is almost the same as that of the direct component only (c);
the direct component is dominant for this task. The amplitude

(a) Direct component.

(b) Amplitude component.

(c) Phase component.

Fig. 10 Confusion matrix of each component.

component, however, also has quite a high discrimination abil-
ity, considering its number of dimension is much lower than the
direct one and it is only motion information without any shape
information. As for the phase component, it seems not as effec-
tive as long as it is used for the person authentication task. It is
in fact intuitively understandable that the phase is not so person-
oriented; everyone swings their right arms and left legs in similar
phase and their left and right arms in opposite phase. It is, never-
theless, notable that this is the first feature representation method
that extracts such phase components so clearly. We expect the
feature would be effective for, e.g., the detailed analysis of slight
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gait change caused by different clothes, shoes, emotion, etc.

4. Conclusion

This paper proposes a novel gait feature representation method
that well describes the characteristics of a walking person from
the perspective of a range sensor. This proposed method does not
require accurate segmentation, and is not affected by view change
since the captured range data has three-dimensional information.
These characteristics allow the method to be applied to general
scenes; we do not need to worry about the difficulty of silhouette
extraction, nor locate a camera at a distant position from a person
to be able to assume orthogonal projection, which is required for
existing 2-D silhouette-based methods. It is also a notable ad-
vantage of our method that it can explicitly separate motion and
shape features, which has never been realized in other studies.
We apply the proposed method to the person authentication task
to evaluate its effectiveness. The experimental results says that
our method gives better performance than a state-of-the-art 2-D
silhouette-based method, though the direct component is domi-
nant for this task.
Limitations. Our method assumes that a range sensor captures
a person roughly from his/her front. As long as the change of
his/her direction is not so large, the method works well thanks
to view normalization. If the change is large, however, it fails
because GDS contains many Nan pixels.
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