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Abstract

This paper proposes a novel method to reconstruct

dynamic scenes by integrating depth data obtained by

multiple Kinects, which cannot be synchronized to one

another. In this method, the multiple Kinects located

so as to cover the whole surface are firstly calibrated

so that their depth data are mapped into the world co-

ordinate system. The synchronous depth data for each

Kinect is then generated by interpolation of temporally

neighboring captured data. Experimental results of

marching person reconstruction show the effectiveness

of our method.

1 Introduction

The reconstruction of dynamic scenes containing

moving or deformable objects is essential in various ap-

plications including mechanical analysis, virtual real-

ity, computer graphics and robotics. One method is the

shape-from-silhouette [8] technique, which uses multi-

ple cameras to obtain the shape of an object as an inter-

section of visual cones corresponding to silhouettes of

the object in captured images. However, this technique

requires many cameras to recover detailed shapes. In

addition, even with so many cameras, the method is se-

riously limited that it cannot recover concavity. Multi-

view stereo (MVS) [3, 4, 13] is another way to recon-

struct such scenes, but it works only for objects with

dense textures. As a way to obtain accurate and dense

shapes robustly, active 3D scanning systems are becom-

ing popular. The minimum configuration of the system

is a projector and a camera. A structured pattern is pro-

jected onto the object’s surface, which is captured by

the camera to obtain the shape according to triangula-

tion. Furukawa et al. [2] extended the method to using

multiple projectors and cameras to measure the whole

shape. However, all the above-mentioned methods us-

ing cameras require that all cameras capture the scene

synchronously. To fulfill this requirement, we must use

special cameras that can operate synchronously. Since

readily available cameras do not meet this requirement,

we have to prepare special cameras, which are usually

much more expensive.

On the other hand, consumer depth sensors such as

the Microsoft Kinects are attracting the attention be-

cause of their low cost and ability to make 3D mea-

surements. The Kinect is originally designed as a nat-

ural user interface so that it is mainly used to estimate

the human pose [1,14]. Considering their potential per-

formance and reasonable cost, however, Kinects should

not be limited to such the applications and they are ex-

pected to be applicable to our purpose, namely the re-

construction of the whole shape of an object, where the

object is surrounded by multiple Kinects. Nevertheless,

to reconstruct dynamic scenes using multiple Kinects,

it is necessary to consider their asynchronous behavior

as well as calibrate the multiple Kinects. While the

cameras of multiple Kinects can be calibrated, asyn-

chronization prevents us from obtaining the shape of

dynamic objects. Since the Kinect is designed not for

our purpose but as a natural interface, there is no way

to achieve hardware synchronization. We are not aware

of studies that solve this problem of asynchronization.

Tong et al. [15] used three Kinect to scan the full hu-

man body in 3D, but the method employed can cope

only with a human standing while not moving. Like-

wise, KinectFusion [6], which is a well-known 3D re-

construction technique, cannot treat dynamic scenes.

This paper proposes a novel method to reconstruct

dynamic scenes by integrating depth data obtained by

multiple Kinects. We believe it to be the first study to

overcome the problem of asynchronous. In the pro-

posed method, the multiple Kinects located so as to

cover the whole surface of an object are firstly cali-

brated so that their depth data can be mapped into the

world coordinate system. The synchronous depth data

for each Kinect are then generated by interpolating tem-

porally neighboring captured data. For this interpola-
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(c) Integration

Figure 1. Outline of the proposed method

tion, we use an extended method of Earth Mover’s mor-

phing (EMM) [9], which was originally designed for 2D

silhouettes.

2 Proposed method

Figure 1 outlines the proposed methods. Multiple

Kinects are located to cover the whole surface of a tar-

get object for reconstructing its whole shape. Firstly,

these Kinects are calibrated to estimate their extrinsic

parameters. Then, in order to overcome the asynchro-

nization problem of the Kinects, we generate depth data

at a certain time for each Kinect by temporal interpo-

lation of its temporally neighboring data. Finally, the

synchronous data of all Kinects are integrated into the

world coordinate system for the whole surface recon-

struction.

2.1 Calibration of multiple Kinects

The Kinect consists of a color camera and range

scanner, whose captured images are aligned to each

other by factory default setting. Thus, extrinsic calibra-

tion of the multiple Kinects can be achieved by practical

multiple camera calibration such as the bundle adjust-

ment [16]. For our 3D reconstruction tasks, however,

we have to calibrate them more precisely considering

the both images of the camera and range scanner.

First, before the extrinsic calibration, intrinsic cal-

ibration for each Kinect is needed. Intrinsic parame-

ters including those about lens distortion are simply es-

timated by the Zhang’s method [17]. Since, as above

mentioned, the range image have already been aligned

to the color image by default, these images are undis-

torted by the parameters. In addition, it has been

confirmed that raw range data usually contains error,

which increases quadratically as the distance between

the Kinect [7]. We capture a planar regions at various

distances and obtain the quadratic coefficient to com-

pensate the error.

After the intrinsic calibration, we apply the bundle

adjustment [16] to the cameras of the Kinects to esti-

mate their extrinsic parameters. As it is weak calibra-

tion, we then give some metric information to make

them metric parameters R
0

j , t
0

j (j = 1, · · · ,M) in

the global coordinate, where M is the number of the

Kinects. Moreover, to find the best parameters consid-

ering the range scanner as well as the cameras, we re-

peatedly update the parameters so that range data of the

Kinects are well aligned in the global coordinate. In

this process, degree of the alignment is evaluated using

planer regions in the scene. By this optimization, we

finally acquire the best parameters Rj , tj .

2.2 Temporal interpolation

To generate range data at a given time t, we employ a

new morphing technique that is originally proposed by

Nakajima et al [12], which is a variant of EMM [10].

Refer to the original paper for its details. This section

describes the technique just briefly.

X = {xi} (i = 1, · · · , NP ) denotes the range im-

age, where NP is the number of pixels. In this section,

however, it is also regarded as a cloud of NP 3D points

each of which corresponds with a pixel of the range im-

age; the temporal interpolation method described as fol-

lows is designed as a method for such a point cloud.

First, temporally neighboring two point clouds of a

certain t are selected as the source and the destination

(Xs and X
d). For each of Xs and X

d, NC clusters

are obtained by fuzzy means clustering [5]. We define

the p-th cluster’s mean x̄p and weight wp as

x̄p =

∑N

i=1
mipxi

∑N

i=1
mip

, wp =
N
∑

i=1

mip, (1)

where mip is a membership of the i-th 3D point to the

p-th cluster, which satisfies
∑NC

p=1
mip = 1 ∀i.

Next we acquire a correspondence so as to mini-

mize transportation cost from the source to the desti-

nation point cloud. Let sets of means and weights for
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the source clusters be {x̄s
p}, {ws

p} (p = 1, · · · , Ns
C),

and those for the destination clusters be {x̄d
q}, {wd

q}

(q = 1, · · · , Nd
C). The earth mover’s distance flows are

optimized so as to minimize the following transporta-

tion cost as

{f∗
pq} = argmin

{fpq}

Ns
C

∑

p=1

Nd
C

∑

q=1

fpq‖x̄
s
p − x̄

d
q‖

2, (2)

where fpq is flow from the the p-th source cluster to the

q-th destination cluster, which is subject to
∑Ns

C

p=1
fpq =

wd
q ∀q,

∑Nd
C

q=1
fpq = ws

p ∀p, and fpq ≥ 0 ∀p, q.

Finally, the source and the destination point cloud

are transported. The i-th 3D point xs
i in the source point

cloud is transported to x
s
ipq by the flow f∗

pq from the p-

th source cluster to the q-th destination cluster by the

weights ws
ipq , which are respectively defined as

x
s
ipq =x

s
i+α(x̄d

q−x̄
s
p), w

s
ipq = (1− α)ms

ipf
∗
pq, (3)

α=(t− ts) / (td − ts) , (4)

where α is the time ratio, and ts and td are time of

the source and the destination point cloud, respectively.

The destination point cloud is also transported in the

same way.

Once the point cloud at t is obtained, points with

smaller weights than a certain threshold are ignored.

Then we resample the points so as to generate the range

image Ẋ = {ẋi}. On this resampling, each pixel value

of the range image is determined by averaging depths

of 3D points that are along the ray corresponding to the

pixel.

2.3 Integration

By the process of Subsection 2.2, we can obtain syn-

chronous range data of the multiple Kinects at an arbi-

trary time. For reconstructing the whole shape of the

object, we transform the synchronous range data to the

world coordinate system using the extrinsic parameters

obtained in Subsection 2.1. Given range data of i-th
Kinect Ẋcj = {ẋ

cj
i }, it can be transformed to that in

the global coordinate as follows:

[

ẋ
wj

i

1

]

=

[

Rj tj

0
T 1

] [

ẋ
cj
i

1

]

, (5)

where ẋ
wj

i is the i-th 3D point transformed to the world

coordinate system.

These range data are integrated into a whole surface

using a mesh integration method by Pietroni et al [11].
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Figure 2. Layout
of the environ-

ment

(a) Still pose (b) Marching

Figure 3. Color
images captured

from a Kinect

3 Experiments

3.1 Experimental setup

For experimental evaluation, we located four Kinects

to encircle a person who marched in place at the center

of the environment (Figure 2) and direct to him/her. The

Kinects were connected to different computers from one

another, whose clocks were synchronized by a NTP

server. The time stamp of each Kinect is then calibrated

to the reference clock.

3.2 Shape reconstruction results

Before evaluating the effectiveness of the multiple

Kinect synchronization, we first confirmed the accuracy

of the calibration by reconstructing a static scene; here

we use a still person as shown in Figure 4. The range

data of each Kinect is depicted by its own color. This

figure shows that the range data is well registered so as

to reconstruct the person accurately, which means that

the all Kinects were calibrated with accuracy enough to

reconstruct the shape as a human body.

We then evaluate the effect of the temporal interpola-

tion. Figure 5 shows results of the person who marched

in place. Since his/her shape was continuously changed

and the Kinects could not be synchronized, the range

data of multiple Kinects could not be well registered

without the temporal interpolation. In fact as shown in

Figure 5(a), the range data could not be well registered

especially around his/her left arm. On the other hand,

with the temporal interpolation, it is confirmed that the

shape is reconstructed accurately; no misalignment of

multiple range data could not be observed as shown in

Figure 5(b).

4 Conclusion

We proposed a novel method that reconstructs dy-

namic scenes using multiple Kinects instead of ex-
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Figure 4. Reconstruction result of the still
person. (Top left: side view, top right:

front view, bottom: topview.)

(a) Without temporal interpola-

tion

(b) With temporal integration

Figure 5. Reconstruction result of the per-
son who march in place. (Left: front side

view, right: back side view.)

pensive synchronous cameras. In this method, multi-

ple Kinects are accurately calibrated so that the range

data can be well registered in the world coordinate.

Moreover, to overcome the asynchronous problem of

the Kinects, virtual synchronous range data is gener-

ated by the extended method of the EMM. The exper-

imental results confirmed the effectiveness of the pro-

posed method; the whole shape of a marching person,

which has never been reconstructed, could be well re-

constructed by the proposed method. In future work,

we plan to temporally interpolate the color images as

well as the range images for more realistic 3D model-

ing in real scenes.
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