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Abstract—In this paper, we propose a method to distinguish
pedestrians facing to the front and the side by using a low
resolution and quality surveillance image sequence. In the past,
there have been many methods to estimate the head orientation
of a pedestrian. However, because all these methods use facial
texture information to achieve the goal, it is difficult to apply
the methods to a low resolution and quality image sequence that
does not include enough information. Therefore, we focus on
the gait change of a pedestrian, which can be acquired even
from a low-resolution silhouette sequence. Experiments confirm
the effectiveness of the proposed method by using low-resolution
image sequences of over one hundred subjects.
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I. INTRODUCTION

In both indoor and outdoor environments, many surveil-
lance cameras are located for safety, security and traffic
measurement. If we can estimate the head orientation of
pedestrians by using these surveillance cameras, it would
be possible to estimate their intentions and behaviors. For
example, in marketing applications, it would be possible to
understand whether or not people become interested in an
advertisement based on their head orientation [1]. In safety
applications, it would be possible to alert careless people
whose head orientation is not front near an area where they
must watch their step.

In the past, there have been many methods to estimate
his/her head orientation from a surveillance camera [2]. Ben-
fold et al. [3] proposed a classification approach using ran-
domized ferns with decision branches based on HOG and
color-based features. Zhang et al. [4] proposed an approach
using multiple orientation-specific face detectors based on a
boosting algorithm. Tosato et al. [5] proposed an approach
using non-linear regression based on the continuity of a head
orientation space. Jung et al. [6] proposed an approach using
head pose tracking with a 3D ellipsoidal model. To keep the
tracking accuracy even in bad capturing conditions, they also
utilize a walking trajectory to approximately estimate a head
region. In common with all these methods, they use facial
texture information for the head orientation estimation. Thus,
they cannot be applied to a low resolution and quality image
sequence that does not include enough information.

We therefore propose a method to estimate the head orien-
tation of a pedestrian without using facial texture information.
As information except facial texture one, we focus on a
way of walking (i.e., gait) [7]. Gait has already used in
many applications using a silhouette image sequence such as
human identification [8]–[10], age estimation [11] and gender
estimation [12]. When distinguishing the head orientations, we
can utilize the gait change of not only the head region but
also the other body regions. They must be useful when the
pixel size of the head region is quite small. In this paper, to
confirm the effectiveness of our approach, we set the goal as
distinguishing pedestrians who face to the front and the side.

The remaining of the paper is organized as follows. In
Section II, we explain how to distinguish pedestrians who face
to the front and the side using a gait change. In Section III, we
show some experiments with more than one hundred subjects
to prove the effectiveness of using the gait change. In Section
IV, the conclusion of this paper and future works are described.

II. METHOD TO DISTINGUISH THE HEAD ORIENTATIONS

The overview of the distinction method is shown in Fig.
1. First, silhouette images of a pedestrian are extracted from
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Fig. 1: Overview of the distinction method
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an input image sequence. Next, the position alignment and the
size normalization are performed on the extracted silhouette
images. We define the silhouette images stacked in the direc-
tion of the time axis as the Gait Silhouette Volume (GSV).
Then, a walking period is determined as the number of frames
that gives the highest value of the normalized autocorrelation
of the GSV in the time axis. Finally, we obtain the Frequency
Domain Features (FDF) [8], by performing Discrete Fourier
Transformation (DFT) at each pixel of the GSV as follows:

𝐺 (𝑥, 𝑦, 𝑘) =

𝑁gait∑

𝑛=1

𝑔(𝑥, 𝑦, 𝑛)𝑒−𝑗𝜔0𝑘𝑛, (1)

where 𝑁gait is the gait period and 𝑔 (𝑥, 𝑦, 𝑛) is a silhou-
ette value of the GSV at a pixel (𝑥, 𝑦) in the 𝑛-th frame.
𝜔0 = 2𝜋/𝑁gait is the base angular frequency for the gait
period 𝑁gait. 𝐺 (𝑥, 𝑦, 𝑘) is the DFT of the GSV for 𝑘-times
the base frequency. Then its amplitude spectrum 𝐴 (𝑥, 𝑦, 𝑘) is
calculated as follows:

𝐴 (𝑥, 𝑦, 𝑘) =
1

𝑁gait
∣𝐺(𝑥, 𝑦, 𝑘)∣ . (2)

As with [8], the direct component (𝑘 = 0, i.e. averaged
silhouette) and low frequency ones (𝑘 = 1, 2) are used as
the FDF in our method. Note that the only direct component
of the FDF is equivalent to the Gait Energy Image (GEI) [7].
In this paper, the FDF and the GEI are used as gait features.

To classify the head orientation of pedestrians into two
classes (“Front” and “Side”), we generate a discriminant model
by using gait features whose class label is given. In our
method, first each gait feature is compressed by the Principal
Component Analysis. Then, we obtain the discriminant model
that projects the compressed gait features into a space where
the ratio of the variance between the classes to the variance
within the classes is maximized by the Linear Discriminant
Analysis (LDA).

III. EXPERIMENTS

A. Experimental setting

To capture many pedestrians who turned his/her head to
the front or the side, we prepared a game where a subject
sought and followed a moving character shown in an 18m
width screen while walking in a lane (Fig. 2). At the top of
the screen, range sensors (Microsoft Kinects) were located
so that the subjects were captured from their side. Using
range data captured from the Kinects, the silhouette images of
subjects could be easily extracted by background subtraction.
In the size-normalization of the silhouette images, we set the
resolution of GSVs as 128×88 pixel, which was adopted in
[13].

To give the ground truth, we acquired the head orientation
of each subject by visual judgment from a color image se-
quence that was also captured from the Kinects. From captured
data of 113 subjects, we labeled a total of 230 and 79 subjects
as “Front” and “Side”, respectively. In the evaluation of our
discrimination, since the number of subjects of the two classes
was uneven, we first randomly sampled subjects so that their
numbers should be equal. Then we calculated the accuracy
rates of the discrimination by Leave-one-out Cross Validation.
After fifty loops of the random subject sampling and the

Kinects�

Fig. 2: Scene of a walking game

TABLE I: Confusion matrix of the head orientation discrimi-
nation

Front Side

Front 93.0% 7.0%
Side 8.7% 91.3%

accuracy rate calculation, the total performance was obtained
by the average of the accuracy rates.

B. Results of head orientation discrimination

TABLE I shows the confusion matrix of the head orienta-
tion discrimination using the FDF. Our method achieved over
90% accuracy rates without using facial texture information.
Additionally, as can be seen in Fig. 3, the distributions of two
classes were well discriminated in the projected feature space.
To see the representation of the discriminant axis, (A) and (B)
of Fig. 3 were chosen as the representative sample point of two
classes and reprojected to their FDFs (Figures 4 (a) and (b)).
From this result, it is found that although the appearance of
the head shape, the back shape and the length of stride varied
by changing the head orientation, the most markedly-changed
region is the right side of the head. It was caused by the brim
of a cap. In fact, we asked all subjects to wear the cap because
it is difficult for Kinect to obtain range data of a hair region.
Therefore, to eliminate the effect of the brim in the estimation,
we masked the brim region in all GSVs. TABLE II shows the
confusion matrix in the case that the brim region was masked.
Although the accuracy rates fell a little, we could keep high
accuracy rates as about 88%. In the remaining experiments,
the brim region of the cap was masked on GSVs beforehand
for the above reason.

C. Results comparison between the FDF and the GEI

We compared the result of the head orientation discrimi-
nation between the FDF [8] and the GEI [7]. Additionally, we
also show the result using only low frequency components
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Fig. 3: LDA value histogram of each head orientation class
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Fig. 4: FDF reprojected from two points of Fig. 3

(1st+2nd) to see whether they have an effect on the head
orientation discrimination.

Figure 5 presents their accuracy rates. As a result, the
accuracy rates of the FDF and the GEI were almost same,
and the ones of low frequency components were lower than
the others. Therefore, it can be said that the direct component
is the most crucial, and the lower frequency ones have less
information for the head orientation discrimination. Here, let
us see the reprojected FDFs of Fig. 4. It can be said that
the low frequency components appeared near the contour of
the direct component. Because the lower frequency ones were
redundant information of the GEI, they were not useful for the
head orientation discrimination. In the remaining experiments,
we used the GEI for the above reason.

D. Results comparison in GEIs masked on body parts while
changing their resolution

To confirm the effectiveness of using the gait of the whole
body, we prepared some masked GEIs on body regions and
obtained the accuracy rates of GEIs that included only head,
only torso and only leg regions. Additionally, we downsampled
these GEIs and obtained their accuracy rates not only to
confirm whether our method could be applied to a lower
resolution image sequence but also to compare the change of
the accuracy rates in the body regions.

Figures 6 (a), (b) and (c) show the accuracy rates of
the GEIs of each body region, respectively. As we had ex-

TABLE II: Confusion matrix of the head orientation discrimi-
nation in the case that the brim region of the cap was masked

Front Side

Front 87.8% 12.2%
Side 12.5% 87.5%
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Fig. 5: Accuracy rates of the combinations of FDF components

pected, the head region was crucial for the head orientation
discrimination. However, its accuracy rates were decreased by
downsampling the GEIs because it became difficult to express
the difference of the head shape in the head orientation. On the
other hands, although the accuracy rates of the torso and the
leg region were lower than the ones of the head regions, their
accuracy rates were more stable. This is because these regions
that are larger than the head region could express the difference
in the head orientation more stably. When comparing between
Figures 6 (a) and (d), it can be said that the result of the
whole body was better than the one of the only head region,
especially in lower resolution GEIs. From this result, we could
confirm the effectiveness of using not only the head but also
the other body regions in the head orientation discrimination.

IV. CONCLUSION

In this paper, we proposed a method to distinguish pedes-
trians who face to the front and the side by using a gait change
that can be acquired from a low resolution and quality surveil-
lance image sequence. In the experiments, it was confirmed
that the gait change of not only the head region but also
the other body regions is effective for the head orientation
discrimination in a low resolution image sequence.

In future work, based on our proposed method, we will try
to distinguish pedestrians facing to the front and the side in a
shopping mall as one of real environments. It will be possible
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Fig. 6: Accuracy rates of low resolution GEIs

to understand whether walking shoppers are interested in a
shop and its products that are located laterally on a walkway
in the mall. For the achievement of the distinction in a real
environment, we will extend our proposed method so that a gait
feature can be obtained even when a pedestrian walks not only
straightly but also freely. Furthermore, to model the relation
between a gait change and the head orientation, we will try to
compute the regression analysis between a gait feature and its
head orientation angle.

ACKNOWLEDGMENT

This work was supported by Core Research for Evaluation
Science and Technology (CREST) of the Japan Science and
Technology Agency (JST).

REFERENCES

[1] K. Smith, S. O. Ba, J.-M. Odobez, and D. Gatica-Perez, “Tracking
the visual focus of attention for a varying number of wandering peo-
ple,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 30, no. 7, pp. 1212–1229, 2008.

[2] T. Siriteerakul, “Advance in head pose estimation from low resolution
images: A review,” International Journal of Computer Science Issues
(IJCSI), vol. 9-2, no. 3, pp. 442–449, March 2012.

[3] B. Benfold and I. Reid, “Guiding visual surveillance by tracking
human attention,” in Proceedings of British Machine Vision Conference
(BMVC) 2009, London, UK, September 2009.

[4] M. L. Zhenqiu Zhang, Yuxiao Hu and T. Huang, “Head pose estimation
in seminar room using multi view face detectors,” in Proceedings of
the 1st international evaluation conference on Classification of events,
activities and relationships (CLEAR2006), Southampton, UK, 2006, pp.
299–304.

[5] D. Tosato, M. Farenzena, M. Spera, V. Murino, and M. Cristani, “Multi-
class classification on riemannian manifolds for video surveillance,”
in Proceedings of the 11th European Conference on Computer Vision
(ECCV2010), Crete, Greece, September 2010, pp. 378–391.

[6] S.-U. Jung and M. Nixon, “On using gait biometrics to enhance face
pose estimation,” in Proceedings of The IEEE Fourth International
Conference on Biometrics: Theory, Applications and Systems (BTAS
10), Washington D.C., USA, September 2010, pp. 1–6.

[7] J. Han and B. Bhanu, “Individual recognition using gait energy im-
age,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 28, no. 2, February 2006.

[8] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagi,

489



“Gait recognition using a view transformation model in the frequency
domain,” in Proceedings of the 9th European conference on Computer
Vision (ECCV2006), vol. 3, Graz, Austria, May 2006, pp. 151–163.

[9] H. Ali, J. Dargham, C. Ali, and E. G. Moung, “Gait recognition using
gait energy image,” International Journal of Signal Processing, vol. 4,
no. 3, pp. 141–512, September 2011.

[10] H. Iwama, M. Okumura, Y. Makihara, and Y. Yagi, “The ou-isir
gait database comprising the large population dataset and performance
evaluation of gait recognition,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 5, pp. 1511–1521, 2012.

[11] Y. Makihara, M. Okumura, H. Iwama, and Y. Yagi, “Gait-based age
estimation using a whole-generation gait database,” in Proceedings of
the International Joint Conference on Biometrics (IJCB2011), no. 195,
Washington D.C., USA, October 2011, pp. 1–6.

[12] S. Yu, T. Tan, K. Huang, K. Jia, and X. Wu, “A study on gait-based
gender classification,” IEEE Transactions on Image Processing, vol. 18,
no. 8, pp. 1905–1910, 2009.

[13] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W.
Bowyer, “The humanid gait challenge problem: Data sets, performance,
and analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 27, pp. 162–177, 2005.

490


