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Abstract

In this paper we propose a method for temporal in-
terpolation of a point cloud undergoing occlusions and
topological changes. The point cloud is first merged
into fine clusters, which are then further merged into
coarse clusters for each source and target shape. In
conjunction with trash box bins to cope with occlusions,
a coarse correspondence between a source and a target
shape is found that minimizes the transportation cost
in the earth mover’s distance framework. Subsequently,
a fine correspondence is found in a similar way based
on the coarse correspondence constraint to suppress lo-
cally isolated motion. Finally, the source and target
point clouds are transported based on the fine corre-
spondence. Experiments with point cloud sequences
captured by a Kinect range finder show promising re-
sults.

1. Introduction
Recently, range data have been used in a wide range

of fields including 3-D face recognition [3], 3-D face
modeling [1], human pose estimation [12], and cultural
heritage modeling [9]. To capture dynamic objects (e.g.,
facial expressions and human poses), range data with
higher frame-rates are preferable in several applications
for better visualization and performance.

One of the ways of generating such range data is
temporal interpolation by shape morphing techniques,
which fall mainly into two categories: (1) surface-based
approaches, and (2) volume-based approaches.

The surface-based approaches usually start by find-
ing correspondences between the source and target sur-
faces, which is also an important process for non-rigid
surface registration, otherwise known as deformable ob-
ject registration [11, 6]. Most of the surface-based ap-
proaches, however, cannot successfully cope with topo-
logically different shapes. As an exception, Bronstein
et al. [5] proposed a topology-invariant similarity com-
prising both intrinsic and extrinsic similarities. In the

method, a shape is modeled as a metric space with
a two-dimensional smooth compact connected surface
embedded in the three-dimensional Euclidean space [4].
Acquiring such smooth compact connected surfaces,
however, could be difficult if the range data contain sig-
nificant noise and also discontinuities due to occlusions.

The volume-based approaches treat topologically
different shapes in a more natural way by interpolat-
ing signed distance fields for source and target shapes
(e.g., a positive value for the inside shape and a nega-
tive value for the outside shape) [10] or by applying a
level-set method to the signed distance fields [2]. How-
ever, they naturally require volume data with a closed
surface and hence cannot be applied to range data with
an open surface observed from a single view.

In this paper, we propose an interpolation method
for range data with open surfaces containing noise, dis-
continuities due to occlusions, and topological changes.
Because it is difficult to reconstruct smooth surfaces
from such range data, we formulate this interpolation as
point cloud transport rather than non-rigid surface de-
formation. In this formulation, a point cloud in a source
shape is directly warped into that of a target shape be-
yond topological changes.

The proposed method was inspired by topology-free
volume-based 2D shape morphing [8], which, however,
suffers from incorrect correspondences due to occlu-
sions, as well as from locally isolated motion due to the
absence of constraints on the smoothness of adjacent
movements.

To overcome such problems, we introduce (1) trash
box bins, and (2) a coarse-to-fine framework. Trash box
bins realize appearing and disappearing processes for
points with no plausible correspondences due to occlu-
sions. Such points in the source and target shapes go to
or come from the trash box bins equipped with the target
and source shapes, respectively. In the coarse-to-fine
framework, the coarse correspondence is employed as
a global constraint for the fine correspondence, thereby
suppressing undesirable locally isolated motion.
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Figure 1. Overview. In (b) and (c), each
point is depicted by an alpha-blended
color based on membership to each clus-
ter. In (d) and (e), flows from source to
target clusters are depicted by a color
transition from yellow to cyan, while a
color transition from/to red indicates the
appearance/disappearance by trash box
bins. In (f), interpolated point clouds are
shown with a transition rate of 0.25, 0.5,
and 0.75 from left to right.

2. Proposed framework
2.1. Overview

An overview of the proposed framework is given in
this section (see Fig. 1). A point cloud is first merged
into fine clusters, which are then further merged into
coarse clusters for each source and target shape. A
coarse correspondence between a source and a target
shape is found in conjunction with the trash box bins to
cope with occlusions. Subsequently, a fine correspon-
dence is found in conjunction with the coarse corre-
spondence constraint to suppress locally isolated mo-
tion. Finally, source and target point clouds are trans-
ported based on the fine correspondence. Details of
each of these steps are given in the following subsec-
tions.

2.2. Clustering
Given a point cloud composed of N 3D data points

{x i} (i = 0, . . . , N − 1), NF fine clusters are obtained
by fuzzy C-means (FCM) clustering [7]. We define the
j-th fine cluster’s mean x̄Fj and weight wFj as

x̄Fj =

∑N−1
i=0 mFijx i∑N−1
i=0 mFij

, wFj =
N−1∑
i=0

mFij , (1)

where mFij is the membership of the i-th 3D data point
to the j-th fine cluster, which holds

∑NF−1
j=0 mFij=1 ∀i.

Furthermore, NF fine clusters are merged into NC

coarse clusters in the same way. We define the l-th
coarse cluster’s mean x̄Cl and weight wCl as

x̄Cl=

∑NF−1
j=0 mCjlwFj x̄Fj∑NF−1

j=0 mCjlwFj

, wCl=

NF−1∑
j=0

mCjlwFj , (2)

where mCjl is the membership of the j-th fine cluster to
the l-th coarse cluster, which satisfies

∑NC−1
l=0 mCjl =

1 ∀j. Figures 1(b) and (c) illustrate examples of the
membership of the fine and coarse clusters.

2.3. Coarse correspondence
The second step involves acquiring a coarse corre-

spondence so as to minimize the transportation cost
from the source to target shapes in a similar way to
that given in [8]. Let the sets of means and weights for
the source coarse clusters be X̄s

C = {x̄ s
Cl} and ws

C =
{ws

Cl} (l = 0, . . . , Ns
C − 1) and those for the target

coarse clusters be X̄t
C = {x̄ t

Cm} and w t
C = {wt

Cm}
(m = 0, . . . , N t

C − 1), where Ns
C and N t

C are the num-
ber of source and target coarse clusters, respectively.
Note that superscripts s and t denote source and target,
respectively.

Moreover, an extra cluster for the trash box bin is
added for each source and target shape. As a result, the
numbers of source and target coarse clusters are incre-
mented to Ns

C+1 and N t
C+1, respectively. For notation

convenience, we assign such extra clusters to the Ns
C-

th source and N t
C-th target coarse clusters, respectively.

Weights ws
CNs

C
for the Ns

C-th source coarse cluster and
wt

CNt
C

for the N t
C-th target coarse cluster are then set

to the sum of the weights of the opposite-side coarse
clusters excluding the trash box bins; more specifically,
ws

CNs
C

=
∑Nt

C−1
m=0 wt

Cm and wt
CNt

C
=

∑Ns
C−1

l=0 ws
Cl,

respectively. Note that this trash box weight setting en-
ables all the clusters to be accommodated by the trash
box bins in the transport stage; that is, entirely appear-
ing or disappearing in an extreme case.

The transportation cost and flow (transportation
amount) from the l-th coarse cluster of the source shape
to the m-th coarse cluster of the target shape includ-
ing the trash box bins are denoted as dClm and fClm

(l = 0, . . . , Ns
C ,m = 0, . . . , N t

C), respectively. The
transportation cost is then defined as

dClm =


∥x̄ t

Cm−x̄ s
Cl−̄v∥2 (l<Ns

C and m<N t
C)

0 (l=Ns
C and m=N t

C)

dCtb
2 otherwise

, (3)

where v̄ is a translation vector between the gravity cen-
ters of the source and target point clouds, and dCtb is the
trash box cost for coarse clusters, which is equivalent to
the threshold for appearing or disappearing in the case
of occlusion. Therefore, the trash box cost must be set
so that it is larger than the maximum Euclidean distance
for plausible point cloud transportation, but smaller than
the Euclidean distance by incorrect correspondence.

Finally, the earth mover’s distance (EMD) flows are
optimized so as to minimize the transportation cost by
the Hungarian algorithm.
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{f∗
Clm} = arg min

{fClm}

Ns
C∑

l=0

Nt
C∑

m=0

fClmdClm, (4)

which is subject to
∑Ns

C

l=0 fClm = wt
Cm ∀m,∑Nt

C
m=0 fClm = ws

Cl ∀l, and fClm ≥ 0 ∀l,m. Now,
we can regard the obtained {f∗

Clm} as the cluster-based
many-to-many correspondence weight coefficients be-
tween the source and target shapes. Figure 1(d) shows
an example of the coarse flows.

2.4. Fine correspondence
The third step involves acquiring a fine correspon-

dence. To suppress locally isolated motion, we consider
the constraint that the fine clusters’ flows are close to
the dominant coarse flows. For this purpose, the domi-
nant flow vs

Cl from the l-th source coarse cluster is first
obtained as

vs
Cl=

{̄
x t
Cm′−x̄ s

Cl (m
′<N t

C)
v̄ (m′=N t

C)
, m′=argmax

m
f∗
Clm. (5)

Note that a translation vector v̄ between the gravity cen-
ters of the source and target point clouds is substituted
as above when the flow to the trash box is dominant
(m′ = N t

C).
The dominant flow vs

Fj from the j-th source fine
cluster is then interpolated based on the coarse domi-
nant flow {vs

Cl} and membership {ms
Cjl} of the source

fine clusters to the coarse clusters is given as

vs
Fj =

∑Ns
C−1

l=0 ms
Cjlv

s
Cl∑Ns

C−1

l=0 ms
Cjl

. (6)

The dominant flow v t
Fk to the k-th target fine cluster is

obtained in a similar way.
The transportation cost and flow from the j-th source

fine cluster to the k-th target fine cluster are denoted as
dFjk and fFjk (j = 0,. . . ,Ns

F , k = 0,. . . ,N t
F ), respec-

tively. The total transportation cost is then defined as

dFjk=


min{∥x̄ t

Fk−x̄ s
Fj−vs

Fj∥2,
∥x̄ t

Fk−x̄ s
Fj−v t

Fk∥2} (j<Ns
F and k<N t

F )

0 (j=Ns
F and k=N t

F )

dFtb
2 otherwise

,

(7)
where dFtb is the trash box cost for fine clusters. Note
that the above transportation cost is defined so that it is
small as the correspondence approaches either of the in-
terpolated dominant flows vs

Fj and v t
Fk from the source

and to the target, respectively. In addition, the trash box
cost dFtb for fine clusters should be smaller than that for
coarse clusters dCtb to avoid locally isolated motion.

Finally, the EMD flows are optimized so as to min-
imize the transportation cost in the same way as for
coarse clusters and the obtained flows are denoted as
{f∗

Fjk}. Figure 1(e) illustrates an example of the fine
flows.

(a) Ball handling (b) Sitting
Figure 2. Range data. Left and right im-
ages show the source and target.

2.5. Transport
Point clouds of the source and target shapes are

transported according to a transition rate α. From a
transport point of view, an intermediate point cloud is
expressed as a set of multiple weighted data points, be-
cause there are multiple point clouds that come from
both the source and target shapes, and which are derived
from multiple memberships of each 3D data point to
the clusters as well as many-to-many correspondences
as a result of the EMD framework. In fact, the i-th 3D
data point x s

i in the source point cloud is transported to
x s
ijk (j = 0, . . . , Ns

F − 1) by the flow f∗
Fjk from the

j-th source fine cluster to the k-th target fine cluster by
weight ws

ijk, expressed as

x s
ijk =

{
x s
i+α(x̄ t

Fk−x̄ s
Fj) (k < N t

F )

x s
i+αvs

Fj otherwise
(8)

ws
ijk =(1− α)ms

Fijf
∗
Fjk, (9)

The i-th 3D data point in the target point cloud is trans-
ported to x t

ijk (k = 0, . . . , N t
F − 1) by weight wt

ijk in
the same way, expressed as

x t
ijk =

{
x t
i−(1−α)(x̄ t

Fk−x̄ s
Fj) (j < Ns

F )

x t
i−(1−α)v t

Fk otherwise
(10)

wt
ijk =αmt

F ijf
∗
Fjk. (11)

Figure 1(f) shows examples of the transition of point
cloud transport.

3. Experiments
3.1. Setup

To evaluate the proposed method, range data for sev-
eral human actions were captured by a KinectTM range
finder, as shown in Fig. 2. Foreground range data were
extracted by background subtraction and a point cloud
was acquired by projecting the foreground range data
into 3D space based on the intrinsic camera parameters,
calibrated in advance. The numbers of fine and coarse
clusters were set to NF = 200 and NC = 20, respec-
tively. The trash box costs for fine and coarse corre-
spondence were, respectively, set to dFtb = 100 [mm]
and dCtb = 200 [mm] experimentally. The proposed
method was compared with topology-free shape mor-
phing [8] as a benchmark.

3.2. Results
Results of the point cloud transport transitions are

shown in Fig. 3. Regarding the ball-handling scene, be-
cause the face is partially occluded by the ball in the
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target shape (green circle in the first row of Fig. 3),
the face in the source and the ball in the target partially
correspond with each other in the benchmark method,
which results in undesirable artifacts (red circles in the
first row of Fig. 3).

On the other hand, the proposed method can appro-
priately handle occlusions as appearing or disappearing
processes using the trash box bins and also suppress
locally isolated motion with the coarse-to-fine frame-
work. Therefore, the proposed method successfully
suppresses such artifacts and realizes more natural point
cloud transitions as shown from the second to fourth
rows of Fig. 3.

4. Conclusion
This paper described a point cloud transport method

for temporal interpolation of range data. To overcome
incorrect correspondence due to occlusions, we intro-
duced appearing and disappearing processes using trash
box bins. In addition, because locally isolated mo-
tion often occurs due to the lack of a constraint for the
smoothness of adjacent motion, a coarse-to-fine frame-
work was included in the proposed method. Both coarse
and fine correspondences were found so as to mini-
mize the transportation cost in the earth mover’s dis-
tance framework. The experimental results show that
the proposed method works well with occlusions and
topological changes.
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Figure 3. Results of point cloud transport.
Transition rates α are 0.0, 0.25, 0.5, 0.75,
and 1.0 from left to right, respectively.
The first and second rows: benchmark
method [8] and the proposed method for
ball handling. The third and fourth rows:
reconstructed surface mesh for ball han-
dling and sitting by the proposed method.
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