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Abstract

Human’s gaze direction is a useful cue to understand
his/her attention and interest. There are many kinds of eye
tracking devices, but they are usually unavailable for people
observed in surveillance views because they are located too
far to observe their eyeballs. If we could know the gaze di-
rection from such surveillance views, it should be very effec-
tive for many applications. Our research objective is thus to
estimate the gaze direction without any eye-trackers but by
observing their behaviors. This paper proposes a new gaze
estimation method based on a dynamical model emulating
dynamic relation between eyeball and head. Experimental
results using head-mounted and body-mounted camera im-
ages confirmed its effectiveness.

1. Introduction
When a person is interested in a certain object, he/she

naturally gazes at the object. Gaze direction is thus a useful

cue to understand his/her attention and interest. If we can

know gaze directions of people who appear in surveillance

camera images, it would be useful for many application; for

example, we could recommend items to a person who looks

interested in them, and we could predict a shoplifter who

gaze at not goods but security cameras or store clerks.

For obtaining gaze direction, eye-trackers are the most

popular way. There are two types of eye-trackers; a wear-

able and stationary ones. In many studies use the wear-

able one for measuring the gaze of a person who moves

freely [1, 2]. On the other hand, the stationary ones are used

for a display [3]. These methods are, of course, give correct

gaze direction. They are, however, not suitable for the ap-

plications above mentioned; a shoplifter will never wear the

eye-tracker, and the stationary ones are useless for people in

a wide area. Recently, there are several studies that estimate

gaze direction by cameras, but even by the state-of-the-art

method such as [4] a person has to appear quite large in

captured images. It is usually impossible to estimate gaze

from surveillance views because they are located too far to

observe their eyeballs.
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Figure 1. Head direction is not identical to gaze direction.

Another possible way is to use head directions instead

of the gaze directions. Even in surveillance views, heads

appear much large than eyeballs. Thanks to development of

face detection and face direction estimation, it is possible to

obtain the head directions in most scenes. In fact, in many

studies related to attention estimation in surveillance views,

this approach are often used [5].

Considering our purpose and the summary of related

works above mentioned, it is reasonable to choose the

camera-based way that rely on that the head direction can

be good approximation of the gaze direction. However, we

doubt this approximation considering the following obser-

vation. Fig. 1 shows human faces naturally directing to

three directions; (a) 0 degree (to the front), (b) 45 degree

and (c) 90 degree (the side). As shown in this figure, a per-

son look to a certain direction by combining rotations of

head and eyeballs, so that he/she never look at the direction

only by the rotation, as reported in [6, 7, 8]. Moreover, this

figure is just about static situations, but when he/she change

his/her attention dynamically, the pose of head and eyeballs

show more complex cooperative motions, which is known

as Vestibulo-Ocular Reflex (VOR). Considering this obser-

vation, this approximation is not correct so that we should

not estimate the gaze direction relying on it.

Aiming at estimating the gaze direction without any
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eye-trackers, therefore, we proposes a new gaze estimation

method by modeling the static and dynamic cooperation of

head and eyeballs. In this method, we approximate this

head-eye cooperative model by a simple dynamic model.

Thanks to this approximation, the model can be formulated

as a differential equation. This equation then can be solved

linearly by sequences of subject’s eyeballs, head and chest,

which is needed to define front for each moment. We evalu-

ate performance of this proposed method by comparing the

result of our proposed method and the method which re-

gards head direction as gaze direction with measured gaze

direction. In this experiment, we use head-mounted and

body-mounted cameras to accurately and easily obtain head

and chest directions by Structure-from-Motion (SfM). We

finally confirm effectiveness of the proposed method.

It should be noted that the proposed method is not only

for egocentric videos. The reason why we used them in

our experiments is just to easily obtain poses of the head

and chest. It would be possible to apply our method even

for surveillance videos if we are equipped with precise

head/chest pose estimation method, which is out of scope

of this paper. In fact, if we limit to the egocentric video

scenario, there are several studies [12, 13, 14].

2. Eye-head coordination

This section describes the eye-head coordination of hu-

man [9, 10]. When a person shifts his/her gaze direction,

he/she moves his/her head as well as eyeballs. According

to [6, 7, 8], when he/she keeps gazing at a certain direc-

tion, rotation angles of the head and eyeballs have linear

relation. In addition, when he/she changes his/her gaze to

another direction, which is called “saccade,” the head and

eyeballs show characteristic cooperation as shown in Fig. 2.

In the early phase of a shift, a eyeball moves to a next di-

rection rapidly. This motion, i.e. saccade, occurs in order

to catch the target in the center of the retina. On the other

hand, the head also moves in the same direction, but starts

moving a little later, because the head has much larger mass

than the eyeball and so is hard to move quickly. After the

head start moving, the eyeball begin to move to the opposite

direction so as to be symmetry with the head motion. This

is considered for make images on retina stable. This neural

control of head and eyeballs is called vestibulo-ocular reflex

(VOR).

Let us see Fig. 2 again. As a result of VOR, the gaze and

head show the following behaviors: When the gaze shift

occurs, the head starts following the gaze at slower speed

than the gaze and converges to a certain angle after enough

length of time. This relation is in fact often observed in real

data. Fig. 3 shows an example of the gaze and head motion

we collected. We can see many pairs of the gaze and head

motion that follow this rule.
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Figure 2. Eye-head coordination
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Figure 3. Eye-head coordination observed in real human behavior.

3. Method
3.1. Approximation Model

Let us imagine two balls connected to each other by a

spring as shown in Fig. 4. We define that a yellow ball can

move freely, and its mass and force the ball receive are ig-

nored. We also define, on the other hand, a blue ball pas-

sively moves pulled by the gaze ball via the spring. More-

over, there is a damper for the blue ball, so that when it is

pulled by the yellow one it can move just gradually (Fig. 5).

In this setting, when the yellow ball is suddenly moved in

a certain length, the blue ball would then move afterwards

with the smaller speed, then finally stop. This situation can

be formulated as follows:

F = mh′′(t) = k {g(t)− h(t)− l} − λh′(t)
⇐⇒ g(t) = ah(t) + bh′(t) + ch′′(t) + d (1)

where m denotes mass of the blue ball, l denotes natural

length of the spring, and g(t), h(t) denote motions of the

yellow and blue balls, respectively.

Considering the observation and discussion in Section

2, the eye-head coordination looks very similar to the be-

haviors of the balls. Conversely, the eye-head coordination

should be well approximated by the formulation for them.

Based on this discussion, we adopt Equation 1 as an approx-

imation model of the eye-head coordination.

3.2. Gaze Estimation Method

It is apparent that once we obtain the model parame-

ters a, b, c, d we should just input observed head motion to
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Figure 4. A dynamic model of two ball connected to each other by

a spring.
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Figure 5. Dynamics when the yellow ball moves aprt from the blue

one.

Equation 1 to obtain estimate of the gaze motion. To obtain

the parameters, we collect multiple pairs of the gaze and

head motion beforehand, and assign them to the following

linear system:

⎡
⎢⎣
g1
...

gT

⎤
⎥⎦ =

⎡
⎢⎣
h1 h′

1 h′′
1 1

...
...

...
...

hT h′
T h′′

T 1

⎤
⎥⎦

⎡
⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ , (2)

where ht, gt denote values of h(t), g(t) at time t. (h(t) =
[h1, h2, · · · , ht], g(t) = [g1, g2, · · · , gt].) By multiplying

pseudo inverse matrix from the left, we can obtain a, b, c, d.
Note that we apply RANSAC for this linear sysmtem to

make the method robust to noises, which are often included

in the gaze motions.

4. Experiment
4.1. Experimental setting

To collect a person’s natural behavior while maintain-

ing high accuracy of motion measurement, we adopted

wearable-camera-based motion capture [11]. each partic-

ipant wore wearable cameras (GoPro HERO3) on his/her

chest and head so as to observe his/her front, as shown in

Fig. 6. In addition, he/she also wore a wearable eye-tracker

(NAC EMR-9) to obtain true gaze history. We applied SfM

to all captured data to reconstruct all 3-D motions of the

cameras (including a camera equipped in the eye-tracker)

as well as 3-D structure of environment.

In the experiments, there were eight participants, but in

this paper we picked up three of them because the others’

motion data looked less reliable due to bad reconstruction

by SfM. The model parameter estimation was performed for

each person, since we considered that each person should

have different gazing manner.

GoProEMR-9

Figure 6. Experimental setting for a participant.

Table 1. Mean absolute error in horizontal angles.

Simple Proposed

MAE 11.6 7.9

Note that we define the front of a participant as his/her

chest direction . Thus relative angles of the gaze and head

to the chest were used as g(t), h(t), respectively.

4.2. Evaluation of Model Validity

In this section, to validate this model approximation, we

used the same sequences of the gaze and head for calcu-

lating the model parameters and as the testing data. More

realistic performance evaluation using different sequences

for training and testing are described in the next section.

4.2.1 Horizontal Direction

Fig. 7 shows experimental results for the three participants.

Black sequences denote the ground truth captured by the

eye-tracker, and orange ones denote g(t) estimated by our

proposed method. For comparison, there are also blue se-

quences describing the head direction. Though it is indeed a

test input for the proposed method, it also has another mean-

ing; another estimate of the gaze based on the assumption

that the head direction well approximates the gaze ones. We

call it “simple method” afterwards.

From these graphs, we confirm that the estimates by the

proposed method apparently outperforms those by the sim-

ple method. In addition, quantitative evaluation is shown

in Fig. 8, which are error histograms of the simple and

proposed methods. Table 1 shows averages of these his-

tograms. From the figure and table, the effectiveness of the

proposed method are re-confirmed.
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Figure 7. Model regression for horizontal angles.
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(a) Simple (b) Proposed

Figure 8. Error histograms for horizontal angles.

Table 2. Mean absolute error in horizontal angles.

Simple Proposed

MAE 7.9 6.8

4.2.2 Vertical direction

We also performed the same experiments for vertical angles

Fig. 9, Fig. 10, and Table 2 show its results. As a result, we

did not confirm effectiveness of the proposed method; it just

gave similar accuracy to the simple method. We consider

this is because of the shape of eye; wide horizontal range

while narrow vertical range.
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Figure 9. Model regression for horizontal angles.
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(a) Simple (b) Proposed

Figure 10. Error histograms for horizontal angles.

4.3. Estimation result

For evaluating performance of the proposed method in

realistic situation, we applied cross validation using two dif-

ferent sequences for each participant. Table 3 summarizes

the results.

5. Conclusion
In this paper, we proposed a new gaze estimation method

by modeling the static and dynamic cooperation of head and

eyeballs. We adopted an approximation model that well em-

51



Table 3. Results of cross validation.
Participant Training Test Simple Proposed

A
scene1 scene2 9.2 7.7

scene2 scene1 9.7 8.2

B
scene3 scene4 22.2 16.8

scene4 scene3 14.9 9.9

C
scene5 scene6 15.6 10.9

scene6 scene5 12.9 9.5

ulate the head-eye cooperative model. Since the model can

be formulated as a differential equation, it can be solved

linearly by sequences of subject’s eyeballs and head. We

evaluate performance of this proposed method by compar-

ing the result of our proposed method and the method which

regards head direction as gaze direction with measured gaze

direction. We finally confirm effectiveness of the proposed

method by applying it to the gaze and head motions col-

lected from real participants. The gaze and head motion

were measured by putting eye-trackers and cameras on their

head and chest and applying SfM to all images captured by

them.

Since this study is still on an early stage, there are many

future works remaining. One of the important tasks is in-

vestigation about variation of the model parameters among

different subjects. If they are similar, the model parameters

can be shared for all people, thus we do not need to worry

about calibration for each subject. If, however, the model

parameters are unique for each person, we need to propose

the calibration method.

Another problem is about reasonability of the model it-

self. In the current model, control of the gaze and head

are defined by a spring. However, it implicitly contains re-

pelling forces when these are nearer than it natural length,

which should never occur in the eye-head coordination. We

might need to deeply consider and design the improved

model.

Application to surveillance views is also an important

topic. In this paper, in order to prepare accurate motion

data, we use wearable devices. Considering the motiva-

tion described in Section 1, however, we should cope with

surveillance views without any wearable devices. We will

realize that by combining the proposed method and state-

of-the-art human pose estimation techniques.
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