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Abstract. We propose a new descriptor for human identification based
on gait. The current and most prevailing trend in gait representation
revolves around encoding body shapes as silhouettes averaged over gait
cycles. Our method, however, captures geometric properties of the sil-
houettes boundaries. Namely, we evaluate contour curvatures locally us-
ing Gauss maps. This results in an improved shape representation, as
contrasted to average silhouettes. In addition, our approach does not re-
quire prior training. We thoroughly demonstrate the superiority of our
method in gait-based human identification compared to state-of-the-art
approaches. We use the OU-ISIR Large Population dataset, with over
4000 subjects captured at different viewing angles, to provide statisti-
cally reliable results.

1 Introduction

Human identification using gait is gaining significant attention by computer vi-
sion researchers and crime prevention practitioners alike. The reason is that gait
can serve as a biometric evidence for determining identities without the coopera-
tion of the subjects. In addition, gait information can be collected at a distance.
This is in contrast to traditional biometric methods, such as fingerprinting, iris
recognition or even face recognition which are both invasive and require sub-
jects’ cooperation. Unfortunately, collecting biometric information at a distance
comes at the expense of performance degradation. Moreover, several parameters
affect the accuracy of identification using gait such as variation of viewing angle
[1–3], walking speeds [4, 5], types of cloth [6] and walking surface [7], to mention
a few.

Given the previously mentioned challenges, a considerable amount of research
has been carried out in the area of gait analysis over the past two decades. The
first decade focused on developing new techniques and devising appropriate de-
scriptors. Among the first features used were contour signals [8], image sequence
correlation [9], self similarity plots [10, 11] and unwrapped contour signals [12,
13]. The first decade concludes with the development of a simple, yet efficient
and accurate descriptor, namely the average silhouette [14]. This latter approach
is currently widespread and represent the state-of-the-art in period based gait
features. It has paved the way for the development of several variants such as
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Gait Energy Image [15], Frequency Domain Feature [2], Gait Entropy Image
[16], Gait Flow Image [16] and Chrono-Gait [17].

Later approaches employed statistical tools, such as discriminant analysis,
to enhance the identification rates of prior methods [18]. More recently, gait
analysis methods have made use of new video capturing technology. With the
development of affordable 3D capturing devices such as Kinect cameras, some
approaches went about generalizing 2D methods to include depth information
[19, 20]. Lately, an approach that combines several existing gait features, using
different fusion techniques, was presented in [21].

1.1 Motivation and intuition

Our objective is to further investigate the geometry of the silhouettes. They
contain more shape information than that derived from their average over a
cycle. In particular, the local curvatures of a silhouette contour encode the body
shape of a subject more robustly than the mere positions of the boundary pixels.
Our motivation is the following: mild variations in the silhouette appearance
resulting from, say, small gait fluctuations, will cause the average shape size or
location to vary. On the other hand, the curvature of the body’s outline will only
change slightly.

We achieve our goal by introducing a novel gait representation, histograms of

boundary normal vectors, in order to compute the curvature of body contours.
Histograms of surface normal vectors have recently been used in object recogni-
tion in still depth images [22]. Unit vectors normal to a surface are linked to its
curvature through Gauss maps [23, 24]. We will further elaborate on Gauss maps
in section 3. For now, we talk about the intuition of using normal vectors. Gen-
erally speaking, two vectors are equal when their magnitude and direction are
equal. If we fix the normal vectors magnitudes to unity, then “parallel” contours
will have the same histograms of normal vectors. This is a desirable property
that makes our descriptor robust to small changes in body dimensions, such as
those resulting from minor gait fluctuations or slight weight gain or loss, for in-
stance. However, different contours may have similar normal vectors histograms
as we will highlight in section 3. This leads us to use Gauss maps locally on
small pieces of the contour.

1.2 Contributions

Our main contributions in this work are the following:

– We propose a novel gait descriptor that encodes body shape more robustly
than existing methods and is less affected by subtle changes in appearance.
Our feature is computed only on silhouettes contours and thus is more ef-
ficient in terms of storage requirements compared to prevalent approaches
that use the entire silhouette area.

– We validate our approach achieves state-of-the-art performance in person
recognition using the world’s largest gait database. With over 4,000 subjects,
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a fair subject gender representation, a wide age range and a variable viewing
angle, this dataset guarantees a statistically reliable performance evaluation.

The rest of this paper proceeds as follows. Section 2 reviews related work.
Section 3 introduces the mathematical background necessary to explain how
our feature works. Section 4 summarizes the process we follow to compute our
descriptor. In section 5, we describe the large population dataset used in our
experiments then show our experimental results in section 6. We conclude the
paper with section 7.

2 Related work

Gait recognition has been studied extensively over the past two decades. Major
approaches to gait representation broadly fit into two categories: model-based
and image- or appearance-based (model-free). In model-based approaches, the
observed human body parts are fit to a human body model. The work of Jo-
hansson using moving light displays [25] is considered to be one of the earliest
model-based human gait recognition approaches. More recent approaches include
the work by Bobick and Johnson [26] in which they use a three-linked model to
fit the torso, leg lengths and strides. Yam et al. [27] extract joint angle sequences
of legs and fit them to a pendulum-like model. Urtasun and Fua [28]employ a
3D model of links, and Yang et al. [29] exploit a 3D human model with cylin-
drical links. Model-based approaches have the advantage of being unaffected by
variations in body shape. Unfortunately, they suffer from high costs of fitting
images to models in addition to errors involved in the fitting process. Recently,
as the technology of depth cameras evolved, Kumar and Babu [30] used Kinect
cameras to capture 3D joint locations and hence build a more accurate skeleton.
In that case, the covariance of joint location sequences is used as a feature. The
same approach is used by Hussein et al. [31] in the wider area of motion recogni-
tion. This technology is still recent, and unavailable in most public surveillance
systems. Moreover, large scale datasets have yet to be prepared. For all previous
reasons, appearance-based approaches are widely spread and more commonly
used.

Appearance-based approaches extract gait features directly from 2D images.
The current trend is to use side-view silhouettes since those capture most vari-
ability in gait motion. No models need to be fit here. Again, this approach is
further divided into two subgroups based on the gait features used: frame-based
and period-based gait features. Frame-based gait features are matched frame by
frame. For a successful evaluation, a synchronization step has to precede the
matching step. Sequences have to be aligned (or be in phase) at a preprocessing
stage. This approach was more frequently used a decade ago. Philips et al. [32]
propose a direct silhouette sequence matching as a baseline method. Wang et al.

[12] exhaustively search the phase shift with the minimal classification distance.
Murase and Sakai [9] employ a parametric eigenspace to represent periodic gait
silhouette sequences. Liu et al. [18] propose a gait dynamics normalization by
using a population hidden Markov model to match two silhouettes at the same



4 H. El-Alfy, I. Mitsugami and Y. Yagi

phase. Beyond the raw silhouette sequences, Cuntoor et al. [33] project the sil-
houettes into a width vector and Liu et al. [34] project it into a frieze pattern.
The main disadvantage of frame-based image-based approaches is that frame-
to-frame matching is very sensitive to noise and to slight phase shifts, specially
when low frame rates are used. On top of that, phase synchronization has often
been a time consuming process.

Finally, period-based gait features are evaluated by integrating individual
frame features over a given period, commonly a computed gait cycle (two stances).
This approach makes the extracted gait features more robust to noise and slight
phase fluctuations when contrasted with frame-based features. Thus, it is no
surprise to find such features commonly used in most current approaches. One
of the earliest robust approaches still used frequently until now is the gait energy
image (GEI) by Han and Bhanu [15] or average silhouette [14]. It is computed
by averaging silhouettes values, pixel by pixel, over an entire gait cycle period.
Given the periodic nature of gait motion, Makihara et al. [2] compute, pixel by
pixel, amplitude spectra of lower frequency components elements in what they
call the frequency domain feature (FDF). Other approaches have also been de-
rived as variants of the GEI method [16, 35, 17]. Besides, other features have also
been proposed, such as self-similarity plots [10, 11], Gabor filter based feature
[36], local auto-correlations of spatio-temporal gradients [37, 38] and histograms
of oriented gradients (HOG) [39, 40]. Recently, motion and shape features were
represented and learned separately, eventually combining both for identification
[41, 42].

3 Gauss maps

The key tool in estimating the curvature of a silhouette contour is to evaluate its
Gauss map. In this section, we introduce this notion, highlighting the necessary
mathematical background. A detailed account of the differential geometry of
curved surfaces is being referred to in [23].

Without loss of generality, a Gauss map is a mapping (function) g from a
surface M ∈ R

3 to the unit sphere S2 such that g associates to each point p ∈ M
the unit vector np normal to M at p.

g :M → S
2

p 7→ np

(1)

A Gauss map measures how curved a surface is. Suppose a surface M is a
(flat) plane. All the normal vectors to M , i.e. the image of g, are parallel to each
other, thus there is no variation between them. On the other hand, the normal
vectors to an “overly” curved surface vary greatly from point to point. For that
reason, it is reasonable to use the mapping g to investigate the curvature of the
surface.

Given a subsurface Ω ⊆ M , the total curvature of Ω is defined to be the area
of the image of the Gauss map g(Ω). In modern literature, the curvature of M
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g(.)

Fig. 1. Example of a Gauss map from a two-dimensional curve to the unit circle.

at a point is measured by what is called the Gaussian curvature k. It is defined
as:

k = lim
Ω→0

area of g(Ω)

area of Ω
(2)

Now, by looking at k as a function on M , we can define the total curvature of
Ω by:

total curvature of Ω =

∫

Ω

k dA (3)

where dA is a surface element on M .
The total curvature of a surface computed globally cannot always be used

to discriminate different surfaces. The reason is that the Gaussian curvature
of a surface M ∈ R

3 is invariant under local isometries. A local isometry of
a surface M is simply a deformation of the surface under which the lengths
of geodesics (curves of shortest length that lie in M) are unchanged. A simple
example of isometric surfaces is that of a cylinder and the plane that results
from “unwrapping” its surface. Both will have the same total curvature.

For that reason, the Gauss maps are defined locally, i.e. on small pieces of the
surface, then local curvatures are computed for each small surface and finally, all
those local curvatures are stitched together in a long feature vector. Now, how
is that related to gait recognition? We simply reduce one dimension. Instead of
computing curvatures of surfaces, we compute them for the contours bounding
the silhouettes. In that case, the Gauss map becomes a mapping from a curve
to the unit circle as shown in Fig. 1.

4 Approach outline

Evaluating Gauss maps of digital images requires first to define a discretization
approach. This is realized in the form of a histogram of normal vectors. The in-
put to our feature extraction module are sequences of normalized gait silhouettes

volumes, or GSV in short. Images of subjects undergo a sequence of preprocess-
ing steps, namely segmentation, camera calibration and size normalization, as
further presented in section 5.1. We focus on developing the new descriptor and
thus use the ready segmented silhouettes. In what follows, we describe our ap-
proach to compute the developed feature descriptor.
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4.1 Gait cycle detection

Gait is mainly a periodic motion. Hence, capturing representative information
requires to determine at least a full cycle, for example motion included between
two double support phases that have the same leg on the front. This includes,
half way through, a double support phase with the legs inverted. The viewing
directions of the sequences used here (and in most literature as well) result in
a variation that occurs chiefly in the horizontal direction. For that reason, we
define a signal m(t) that computes the second moments of the body masses
around a vertical axis that passes through the center of the silhouettes:

m(t) =
∑

x

b(x)|x− xc|
2

where b(x) =

{

1, x ∈ body
0, otherwise

(4)

for all x-coordinates of pixels in the image; xc is the vertical axis location. This
signal has its peaks at double support phases (widest silhouettes) and its minima
at single support phases. Thus, a full cycle starts at a local maximum, skips the
following, then ends at the third one.

The computed moment signals are noisy, highly depending on the quality of
the segmented silhouettes (Fig. 2 (a)). Those signals, hence, need to be smoothed
first, before they can be used. We use the auto-correlation of m(t) for that
purpose [43]. Auto-correlation signals have the advantage of being smooth and
maintain the same cycle length as the original signal. Figure 2 (b) shows the
right half of that signal, since it is symmetric. To limit the range of the auto-
correlation signal, the moment signals m(t) are first normalized as follows:

ω(t) =
m(t)−m(t)

range(m)
(5)

where m(t) is the mean value of m(t) and

range(m) = max
t

{m(t)} −min
t
{m(t)} (6)

Finally, the auto-correlation of ω(t) is computed:

Rω(k) =
n−k
∑

t=1

ω(t)ω(t+ k) (7)

where n is the number of samples (frames) in the signal ω(t).

4.2 Histograms of normal vectors

This is where the main computation of our proposed descriptor takes place. Since
the total curvature of the silhouette boundary is defined to be the area of the
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(a) Normalized moment signal ω(t).
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(b) Auto-correlation signal Rω(k).

Fig. 2. Detecting the cycle length using second moments of silhouettes.

image of the Gauss map, we compute a discretized version of the Gauss map by
accumulating the boundary normal vectors into a histogram. First, we extract
the silhouette contour by a simple border following algorithm. Depending on
the segmentation results, there might be discontinuities in the contour. Those
are fixed by stitching contour segments which extremities are within a tolerable
proximity. Images of silhouettes contours typically contain lots of noise, which
affects the quality of the estimated Gauss map (Fig. 3 (a)). We overcome this
artifact by smoothing them, using cubic spline interpolation, before computing
the normal vectors.

It is very important to determine the orientation (sign) of the normal vectors
to point outside the body of the silhouette. As shown in Fig. 3 (d), we first
select a counterclockwise contour orientation by evaluating the cross product
of a vector t tangent to a convex region (we choose the head) with a vector c

pointing to the centroid of the silhouette. If the value is positive, the tangent
vector points in the counterclockwise direction, otherwise, we flip the contour
orientation. The direction of the normal vectors n can now be determined by
computing their cross-product with the tangent vector t at the same contour
point. A positive value indicates an outward pointing direction, otherwise, the
normal vector is flipped.

The quantization of normal vectors orientations is done by assigning them
to the two closest histogram bins, with linear weighting (Fig. 3 (c)). As a simple
example, given an 8-bin histogram with 45◦-wide bins and an orientation of
54◦, and since 54/45 = 1.2, that orientation will be assigned to bins 1 and 2
with respective weights 0.8 and 0.2. This reduces the quantization error that is
involved with approaches that assign the orientation to a single bin [38].

As indicated earlier, local Gauss maps have the desirable property of uniquely
identifying boundary segments. We approximate locality by dividing the silhou-
ettes (actually their bounding boxes) into a regular grid as in Fig. 3 (b). Within
each grid box, we compute the histograms of normal vectors separately. The
feature descriptor is finally formed by concatenating the histograms of all grid
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(a) Jagged binary
silhouette.

(b) Discretized local
Gauss map.
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Fig. 3. Some steps involved in computing the histograms of normal vectors.

boxes into a single vector. We call it the histogram of normal vectors, or HoNV,
in short.

4.3 Feature matching

We propose two variants to our approach: a frame-based one and a period-based
one. In the frame-based variant, we choose a subset of representative key frames
to match their feature vectors, one-to-one, to feature vectors of key frames of
other sequences. First, key frames are selected by downsampling the number of
frames in a full gait cycle to some fixed value for all sequences. Then, a long
feature vector is formed by joining the vectors for individual key frames. As for
the period-based variant, we compute the histograms for each frame as previously
described and then average them over the period. Following the discussion in
section 2, we expect the period-based approach to perform better, specially in
cases were the frame rate is low, such as young children sequences. We will
further investigate the difference between both approaches in the experimental
results section.

Feature matching is then performed by evaluating, for all pairs of sequences
(gallery and probe), a simple and efficient Euclidean distance metric. Given a
probe feature vector P i and a gallery feature vector Gj , the distance between
them is computed as:

Di,j = ‖P i −Gj‖2 (8)

In the dataset we are using, only one single sequence is captured per subject.
Therefore, learning based methods, such as statistical discriminant analysis tools
cannot be applied here. It is definitely expected, as demonstrated elsewhere, that
such approaches will improve performance in case datasets with more training
samples per class are used.
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(a) 55◦ subsequence. (b) 65◦ subsequence. (c) 75◦ subsequence. (d) 85◦ subsequence.

Fig. 4. Typical frames from a gait sequence that illustrate the four different viewing
angles.

5 Large Population dataset

We have evaluated our approach using the OU-ISIR Large Population dataset
[44]. The main significance of using this dataset lies in the large number of
subjects it contains. This provides statistically reliable results that cannot be
verified with other available smaller datasets. In all, it has 4,007 subjects. How-
ever, in our experiments, we have used subsets of sizes ranging from 3,141 to
3,706 subjects. This is by far larger than any other available dataset we know
of.

Other than being a large scale gait database, the used dataset balances the
gender representation with 2,135 male subjects and 1,872 female subjects. It also
has a wide range of ages spanning from 1 to 94 years old subjects. The presence of
children, in particular, provides a unique and challenging testing situation, where
the number of frames per gait cycle drops significantly. An additional advantage
of using this dataset is that silhouette extraction is performed accurately. For
the purpose of this paper, the tasks of background subtraction and silhouette
segmentation are out of scope. Our aim is to validate our new feature descriptor,
separately from errors that may arise from poorly extracted silhouettes.

Moreover, this dataset captures subjects from different viewing angles. Cur-
rently available datasets simply present their subjects from a “side view” angle.
The subjects in the OU-ISIR dataset, however, are viewed from an angle that
is carefully evaluated, gradually changing from about 50◦ to 90◦. Based on that
angle, each sequence is split into 4 subsequences, centered at 55, 65, 75 and 85
degrees respectively as illustrated in Fig. 4. This allows us to perform a more rig-
orous performance evaluation that verifies, first, the robustness of our approach
on each view angle separately, then, on entire sequences as well.

5.1 Preprocessing

In this section, we briefly note the preliminary stages required to reach the gait
silhouettes volumes (GSV) input used by our feature evaluation code.

1. Silhouette extraction: Background subtraction is performed along with a
graph-cut approach for segmentation [45]. The contour is visualized to fix
any errors manually.
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(a) Background
subtraction.

(b) Visualization of
contour.

(c) Binary
silhouette.

(d) Size
normalization.

Fig. 5. The output of four preprocessing steps performed on the input sequences to
extract gait silhouette volumes (GSV).

2. Camera calibration: Intrinsic and extrinsic camera parameters are estimated
to correct the distortion and carry out the necessary camera rotation.

3. Image registration: A moving-average filter is applied to the extracted sil-
houette images then, their sizes are normalized to 88× 128 pixels.

Some of the previous steps are illustrated in Fig. 5.

6 Experimental results

We present here the results of evaluating our new feature descriptor on the OU-
ISIR Large Population gait dataset [44]. This dataset is divided into five subsets,
based on viewing angle, A-55, A-65, A-75, A-85 and A-All, where the last one
contains full sequences with the viewing angle gradually varying from roughly
50 to 90 degrees. The number of subjects in each subset is shown in Tab. 1. We
implemented the proposed method using Matlab without any code optimization.
Under an Intel Core i7 processor running at 3.5 GHz, our code processes about
60 frames per second, the equivalent of two gait cycles per second given the used
dataset.

Table 1. Number of subject in each subset of the OU-ISIR dataset.

Dataset A-55 A-65 A-75 A-85 A-All

No. of subjects 3706 3770 3751 3249 3141

As mentioned earlier in section 4.3, we have developed a frame-based variant
and a period-based variant. In addition, several parameters, such as the number
of histogram bins and the number of grid boxes can be tuned to enhance the
performance. In this section, we compare the variants of our approach and study
the effect of varying some parameters on the results. Finally, we compare it to
other recent methods.
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6.1 Evaluation of descriptor parameters

We consider first the effect of changing the number of grid boxes on the perfor-
mance. A grid with one box corresponds to a global Gauss map, computed for
the entire silhouettes. As the number of boxes increases, we have more and more
local maps. We illustrate the verification performance using Receiver Operating
Characteristic (ROC) curves. This is a common tool used in biometric appli-
cations. It denotes the trade-off between false rejection rate (FRR) and false
acceptance rate (FAR) as the acceptance threshold is being varied. We also use
Cumulative Match Characteristic (CMC) curves to illustrate the identification
performance. This tool estimates the probability that a correct match is observed
within the top k “closest” matches.

We use the A-85 subset as a study case, employ the period-based approach
and fix the number of histogram bins to 16. The effect of changing the number
of grid boxes (1, 16, 36, 64) is illustrated in Fig. 6. As expected, the performance
of the global Gauss map (1 box) is the lowest. Next, we vary the number of
histogram bins (8, 16, 32) for a fixed grid of 36 boxes. The results are shown in
Fig. 7. Further performance enhancements are achievable but cannot be shown at
the used scale. Instead, we use the Equal Error Rate (EER) value from the ROC
curve, that is the value at which the false acceptance and rejection rates (FAR
and FRR) are equal. We also use the rank-1 and rank-5 identification rates as
representative measures from the CMC curve. For the 88× 128 pixel silhouettes
that we use, best performance (EER = 0.013, rank-1 id. = 93.0%, rank-5 id. =
96.7%) is obtained using 32-bin histograms and a grid of 169 (13× 13) boxes.

6.2 Evaluation of descriptor variants

The results shown earlier are for the period-based approach, as pointed out.
We now evaluate the performance of the frame-based approach. Matching key
frames, as required with this approach, necessitates the alignment of the phases
of the gallery and probe sequences as much as possible. We first used the cycle
boundaries provided with the dataset in order to align the viewpoint. This caused
the sequences to be out of phase, and severely deteriorated the performance. The
average EER is 0.38 and the identification rates are 14.9% for rank-1 and 19.6%
for rank-5.

Next, we extracted the cycles using our own code. Even though the phases
are now synchronized, the view angles are different between probe and gallery
sequences. That is due to the fact that the view angle gradually changes over
the walking course, as mentioned in the dataset description. We still notice a
significant performance boost (EER = 0.079, rank-1 id. = 55.4%, rank-5 id.
= 67.6%), which means that the frame-based approach is more robust to view
changes than it is to phase shift. However, the overall results are unacceptable
when compared to the period-based approach. Thus, we will not pursue the use
of this approach further here since it is unsuitable, at least for this dataset.
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Fig. 6. Performance comparison for varying the number of grid boxes.
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Fig. 7. Performance comparison for varying the number of histogram bins.

6.3 Comparison against other methods

Finally, we compare our feature descriptor with state-of-the-art approaches. In
[44], five methods are tested on the same dataset we are using here. The gait
energy image (GEI) and the frequency domain feature (FDF) approaches exhibit
the best performance of all the tested methods. First, we compare our method
against those two. The significant parts of the ROC and CMC curves (A-85
subset as above) are shown in Fig. 8. At these high identification rates, visualizing
the performance improvements becomes significantly more difficult, and so we
will use the EER metric, the rank-1 and the rank-5 identification rates as we did
earlier. We also compare our method to the average of histograms of oriented
gradients (HOG). That is a very recent approach [40] that employs HOG, a
powerful human detection feature [46]. We implement the method according to
the details in [40] and [46] and test it on the OU-ISIR dataset. We show all
results in Tab. 2. Our method is abbreviated as HoNV for histogram of normal
vectors. The best performance out of GEI and FDF is recorded in the GEI
column. Which method performs best depends on the used dataset. Finally, the
performance of the average HOG technique can be found in the HOG column. It
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Fig. 8. Performance comparison versus other approaches.

is evident that our approach supersedes all other methods on almost all values
of EER and on all values of ranking.

Table 2. Comparison of the performance of our approach (HoNV) versus GEI / FDF
and HOG methods.

EER [×10−2] Rank-1 [%] Rank-5 [%]

Dataset HoNV HOG GEI HoNV HOG GEI HoNV HOG GEI

A-55 1.70 1.59 2.06 91.6 90.4 84.7 95.1 95.0 92.4

A-65 1.43 1.54 1.83 92.1 90.9 86.6 95.4 95.1 92.8

A-75 1.31 1.70 1.97 93.3 91.5 86.9 96.4 95.3 92.9

A-85 1.32 1.78 2.00 93.0 89.9 85.9 96.7 95.0 92.8

A-All 0.58 0.81 1.13 97.5 96.2 94.2 98.7 98.0 97.1

7 Conclusion

We presented a new feature descriptor for human identification using gait: his-
tograms of normal vectors. We developed the method, explained the theory of
Gauss maps on which it relies and demonstrated how it can exploit boundary
curvature information. We verified that the new feature encodes enhanced shape
information when compared with state-of-the-art approaches. Our superior re-
sults are validated through rigorous experiments using the world’s largest gait
database. In addition, our method does not require any training which makes it
also valid when a small number of sequences per subject is available.

We are currently working on several improvements to the presented approach.
When a large training sample is available, we are studying to which extent some
statistical tools, such as discriminant analysis, can enhance the identification
results. The main drawback of our approach is that it relies on the quality of
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the extracted silhouettes. In that regard, we will carry out further comparisons
with other contour-based approaches. On a different note, recent work [21] has
suggested that combining gait features can improve performance. Thus, we would
like to study how does fusing our method with other approaches improve the
discriminative power of the combined method.
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